FINLAND's INFORMATIVE INVENTORY REPORT 2021


Air Pollutant Emissions 1980-2019
under the UNECE CLRTAP and the EU NECD

Part 4 - IPPU

March 2021

FINNISH ENVIRONMENT INSTITUTE

Centre for Sustainable Consumption and Production Environmental Management in Industry – Air Emissions Team

PART 4 IPPU

4 INDUSTRIAL PROCESSES and PRODUCT USE (NFR 2)

4.1 Overview of the sector

4.2 Mineral Products (NFR 2.A)

Overview of the NFR category

Cement production

Lime production

Glass production .

Quarrying and mining of minerals other than coal

Construction and demolition

Storage, handling and transport of mineral products

Other Mineral products

4.3 Chemical Industry (NFR 2.B)

Overview of the NFR category

Ammonia production

Nitric acid production

Adipic acid production

Carbide production

Titanium dioxide production

Soda ash production and use

Other chemical industry

Storage, handling and transport of chemical products

4.4 Metal Industry (NFR 2C)

Overview of the NFR category

Iron and steel production

Ferroalloys production

Aluminium production

Lead production

Zinc production

Copper production

Nickel production

Other metal production

Storage, handling and transport of metal products

Domestic solvent use including fungicides

Road paving with asphalt

Asphalt roofing

4.5 Solvent and Other Product Use (NFR 2D)

Coating applications

Degreasing

Dry cleaning

Chemical products

Printing

Other solvent (2D3i) and product (2G) use

4.6 Other industry (NFR 2H)

Pulp and paper

Food and beverages industry

Other industrial production including production, consumption, storage, transportation or handling of bulk products

Wood processing

Production of POPs

Consumption of POPs and heavy metals

INDUSTRIAL PROCESSES AND PRODUCT USE (NFR 2)

4.1 Overview of the sector

Changes in chapt	er
January 2020	KS

The main activities in the Industrial processes and product use sector in respect to air pollutant emissions in Finland are mineral, chemical, metal and forest industries, as presented in Figure 4.1

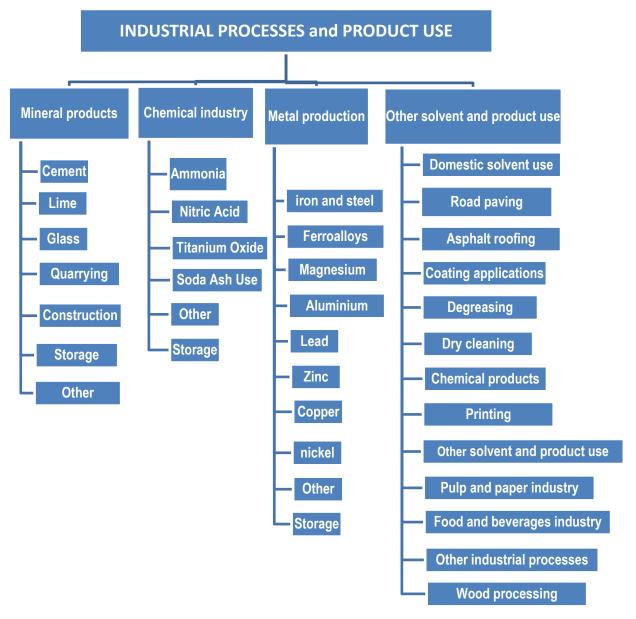


Figure 4.1 Industrial process included in the Finnish air pollutant inventory.

Allocation of emissions in the NFR Table

Emissions from industrial activities are allocated under the NFR categories as follows:

Energy NFR 1 production of electricity consumed in the industry

electricity and heat autoproducers in the industry

use of off-road machinery and industrial transport

IPPU NFR 2 production processes

Waste NFR 5 industrial waste management

Data reported by the plants

Plant operators report their emissions to the supervising authorities¹ according to the monitoring requirements in their environmental permits. In many cases the reporting obligations determined in the monitoring programmes are for the total emissions of the plants and not separately for fuel combustion or the individual process emissions. In cases where it has not been possible to make a split between energy and process related emissions, or when the emissions are clearly fuel based, all emissions are reported under the relevant NFR 1A2 subcategory.

For those plants that have a reporting obligation to report all emissions from all activities as total emissions from the site (e.g. under the E-PRTR), the process related emissions are estimated to be the difference between the total emissions reported by the plant and the default emissions calculated on basis of fuel consumption, the difference is reported under the industrial processes.

Condensable part of particulate matter

TSP emission concentrations are measured in the stack according to the agreed the EN standards (EN 13284-1), which is a gravimetric particle measurement and thus does not cover condensable particles. Thus TSP emissions reported by the operators and used in the preparation of the inventory, do not include the condensable part, neither PM10 or PM2.5 fractions that are calculated from these TSP emissions.

When Guidebook 2019 EFs for particles are used, we refer to the Guidebook in the knowledge of inclusion or exclusion of condensables.

Activity data

The Finnish air pollutant emissions inventory is largely based on data reported by the plants, where this data is available, as this is considered to be more accurate than calculation with emission factors and statistical data. In cases where the emissions are based on data reported by the plants, it has in many cases not been possible to present the related activity data. This is due to the fact that Finland is a small country and for many industrial processes there only exist one or two plants, thus the units of activities fall under three, which is the internationally used threshold for statistical confidentiality and means that the data cannot be publicly presented. This is the case especially for the IPPU sector.

¹ The emission data is available from the YLVA formely VAHTI database after it has been checked and approved by the authorities.

Emission trends

Emissions from industrial processes are affected by changes in production volumes, changes in the processes or in the use of raw materials and auxiliary chemicals. In the trends it can be clearly seen that the production volumes decreased in the 1990s' when a number of plants shut down their operations due to the recession and increased again since 1996 until mid-2000's, when a decreasing trend has returned with the economic turndown (Figure 4.2).

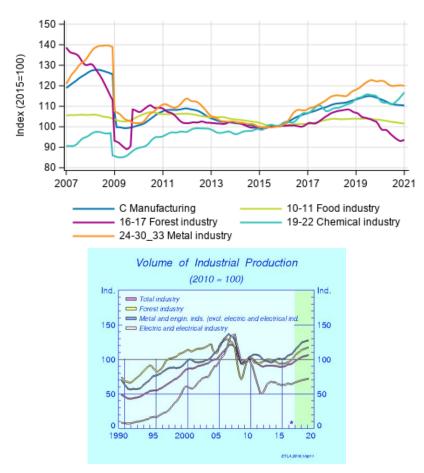


Figure 4.2 Industrial production 1990-2020 (Statistics Finland https://www.stat.fi/til/ttvi/index_en.html, ETLA https://www.etla.fi/kultap/index.html 2021)

4.2 Mineral Products (NFR 2.A)

Changes in chapter February 2021 KS, JMP

Source category description

Industrial activities falling under NFR 2A Mineral products are listed in Table 4.1. Corrections in the allocations will be made when the recalculations are finalized.

Table 4.1 Industrial activities and air pollutant emissions under NFR 2A Mineral products.

NFR	Source	Emissions reported under NFR 2A
2A1	Cement production	NMVOC, PCDD/F, PCB
2A2	Lime production	TSP, PM ₁₀ , PM _{2.5} , BC, PCDD/F, PCB
2A3	Glass production	PM2.5, PM10, TSP, BC, NMVOC, PCDD/F
2A5a	Quarrying and mining of minerals other than coal	TSP, PM ₁₀ , PM _{2.5} ,
2A5b	Construction and demolition	TSP, PM ₁₀ , PM _{2.5} , heavy metals (Pb, Cd, Hg, As, Cr, Cu, Ni) are energy related and allocated under 1A2f.
2A5c	Storage, handling and transport of mineral products	TSP, PM ₁₀ , PM _{2.5}
2A6	Other mineral products	Not Occuring

Cement production (NFR 2A1)

Changes in chapter					
February 2021	JMP, KS				

Source category description

SNAP 040612		Cement has been produced in Finland since 1914. There are currently two operating plants in Finland. At a third plant procution ceased in 1993. The			
Key category fo PCB emissions	r	current plants fall under the IED and report their emissions according to the monitoring requirements in their environmental permits. REF (recovered fuels prepared out of waste material) is used as fuel in these plants, in addition to rubber waste (since 1996). The plants also have permission to use bio-based fuels (plant or grain based fuels) for experimental use. Fuel combustion emissions are reported under the energy sector.			
Emissions	Tier	Source of emissions			
NMVOC	T3/T2	Cement production prosess emissions (partly reported by the plants and partly calculated), allocated under 2A1, emissions reported 1990 onwards.			
PCDD/F	Т3/Т2	waste fuel combustion (rubber, REF) allocated under 2A1, emissions reported by plants 1990 onwards.			
РСВ	T2	waste fuel combustion (rubber, REF) allocated under 2A1, emissions reported by plants 1990 onwards.			
PAHs	Т3	waste fuel combustion (rubber, REF) allocated under 2A1, emissions reported by plants 1990 onwards.			

Emission trend

Cement industry is a minor source of air pollutant emissions in Finland (Figure 4.3). Cement production volumes affect emissions over the years. The NMVOC peak in 2016 is reported by the plants.

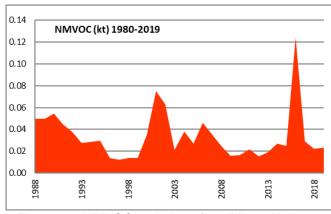


Figure 4.3. NMVOC emissions from Mineral industry

Part of emissions are reported by the plants. For those plants that do not report emissions, these are calculated. The shares of emissions reported by the plants out of total emissions for each air pollutant are presented in Table 4.2.

Table 4.2 Contribution of cement production to total emissions and the shares reported by plants in 2019.

Pollutant	Emissions from cement production	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	0.023	84.522	Gg	<0.1	27.6
PCDD/ F	0.04	12.132	g I-Teq	0.3	100
PAHs	<0.001	22.309	Mg	<0.1	0
PCBs	2.846	22.78	kg	12.5	0

Methodological issues

Activity data

Cement production volumes used as activity data presented in Table 4.3 are based on yearly statistics in the Kemia-Kemi Journal before the year 2000, and after the year 2000 on data reported by the plants and thus confidential because there are less than 3 plants. Table 4.3 Cement production volumes (t/a), Kemia-Kemi Journal (1990-1999) and from YLVA (since 2000)

Year t/a Year t/a Year t/a Year t/a 1 649 220 1980 1 815 128 1990 2000 С 2010 С 1981 1 862 913 1991 1 343 000 2001 С 2011 C 1982 1 906 639 1992 1 133 000 2002 C 2012 1993 2003 2013 1983 1 978 925 836 000 1984 1 691 511 1994 864 000 2004 2014 C 1985 1 695 367 1995 906 970 2005 2015 1996 1986 1 495 411 975 425 2006 C 2016 C 1987 1 579 284 1997 1 151 990 2007 2017 C C 1988 1998 1 232 235 2008 2018 1 618 509 C C 1999 1 309 935 1989 1 693 304 2009 2019

Table 4.3 Cement production volumes.

Estimation of emissions

Emissions are mainly calculated at T2/T3 level based and partly reported by the plants. For those plants that do not report emissions, or for years of missing data in the companies' reporting, the emissions are calculated.

NMVOC emissions are either reported by the plants or calculated:

For the years 1990-1995 and 1997-1999 no data has been reported by the plants, thus the emissions for are calculated using the IEFof 0.033 kg/t for that period, which is derived from

- emission data reported by the plants (SYKE, 2007). The calculated emissions from cement production are presented in Table 4.4.
- For the year 1996 and since 2000 the emissions include both data reported by the plants according to the monitoring requirements in the environmental permits and calculated emissions.

PCDD/F emissions include both data reported by the plants and calculated data:

- Emissions have been reported by one of the plants since 2001.
- For the years prior to 2001 the emissions of all plants are calculated using the national EF 25.8 g I-Teg, which is derived from data reported by the plants (SYKE, 2007).
- Since 2001 the reported emission data contains both calculated emission data and emission data reported by the plants.

PCB emissions are calculated using the EF of 2000 ug/t (BiPRO, 2006) because there is no method in the Guidebook. The relevance of the emissions will be studied for future submissions.

PAH emissions have been reported by the plants since 2007. For the years 1990-2006 the same emission estimate based on plant reported data in 1995 has been used.

Year	NMVOC (kg)	PCDD/F gl-Teq	PCB (kg)	Year	NMVOC (kg)	PCDD/F gl-Teq	PCB (kg)
1990	54	0.029	3.30	2006	46	0.013	3.08
1991	44	0.035	2.69	2007	35	0.014	3.54
1992	37	0.029	2.27	2008	25	0.014	3.27
1993	28	0.022	1.67	2009	16	0.008	2.05
1994	29	0.022	1.73	2010	17	0.010	2.39
1995	30	0.023	1.81	2011	22	0.014	2.80
1996	14	0.025	1.95	2012	16	0.011	2.55
1997	12	0.030	2.30	2013	19	0.011	2.55
1998	14	0.032	2.46	2014	27	0.010	2.52
1999	14	0.034	2.62	2015	25	0.010	2.35
2000	35	0.037	2.85	2016	124	0.014	2.68
2001	75	0.012	2.65	2017	29	0.015	3.07
2002	63	0.011	2.39	2018	22	0.050	2.90
2003	21	0.011	2.37	2019	23	0.040	2.85
2004	38	0.010	2.59				
2005	27	0.011	2.69			_	

In Guidebook 2019 emission factors are presented for particle emissions. In the Finnish inventory TSP emissions reported by the plants according to the monitoring and reporting requirements in the environmental permits are used. These emissions are fuel based and therefore the emissions are allocated under NFR 1A2f.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to assessment of magnitude and trends have been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2018

- Recalculation of the energy sector time series enabled harmonization of the reporting under the 2019 NFR codes
- The whole time series was calculated using same methods

Activity data for years 2013-2018 were updated.

Source-specific planned improvements

Not scheduled: Check of EFs in the time-series

Lime production (NFR 2A2)

Changes in chapter	•
February 2021	JMP KS

Overview of the sector

SNAP 040614		LIME DECARBONIZING Production volumes of lime were constent over the period 1990-2002. A new plant was started in 2003.				
Not a key category for any pollutants		There are currently five lime-producing plants in Finland, one plant was closed down at the end of 2014. All plants fall under the IED and report their emissions according to monitoring requirements in their environmental permits. The category also includes lime stone mines (quarrying of lime).				
Emissions Tier		Source of emissions				
TSP,		Particle emissions are reported by plants since 1990. PM ₁₀ and PM _{2.5} fractions have been calculated from				
PM10,	T3	the TSP emissions using fraction factors of 39% and 8% from TSP (GB19). Black carbon emissions are calcuted from PM2.5 emissions.				
PM2.5, BC		Calcuted HOTH PIVIZ.3 ethissions.				
PCDD/F	1	waste incineration (recycled and waste oils) reported under NFR 2A2, emissions reported since 1990				
PCB 1		waste incineration (waste oil) reported under 2A2, emissions reported since 1990.				

Emission trends

The emission trends are impacted by annual production volumes (Figure 4.4). The peak in particle emissions in 2007 is due to malfunction of abatement at one plan and the declining emissions are due to new abetement technologies.

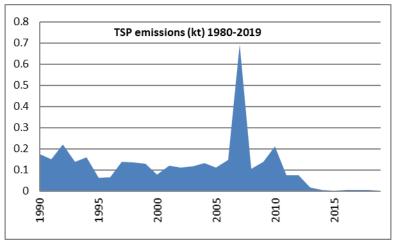


Figure 4.4 Particle emissions from Lime production

The shares of emissions reported under the NFR category are presented in Table 4.5.

Table 4.5 Contribution of lime production to total emissions and shares reported by plants in 2019.

Pollutant	Emissions from lime production	Total emissions	Unit	Share of total emissions %	% reported by plants
PM _{2.5}	<0.001	16.622	Gg	<0.1	0
PM ₁₀	<0.001	30.034	Gg	<0.1	0
TSP	0.002	44.952	Gg	<0.1	100
BC	<0.001	3.848	Gg	<0.1	0
PCDD/	0.129	12.132	g I-	1.1	0
PCBs	0.248	22.78	kg	1.1	0

Methodological issues

Only total particle emissions are reported by the plants (Table 4.5) according to the monitoring requirements in the environmental permits. When no plant specific data is available, the emissions have been calculated from lime production (Table 4.7).

Particles

PM₁₀ and PM_{2.5} emissions have been calculated from the TSP emissions reported by the plants using fraction factors of 38.8% and 7.78%, respectively (Guidebook 2019).

Black carbon emissions have been calculated using the factor of 0.46% of PM2.5 emissions (Guidebook 2019).

POPs

Emissions are calculated using lime production annual statistics available in the Kemia-Kemi Journal (Table 4.6) and the following emission factors: for PCDD/F 78 ng I-TEQ/t (UNEP, 1999) and for PCB 0.15 mg/t (BiPRO, 2006). There are no methods in Guidebook 2019. The relevance of the methods will be studied for future submissions.

Table 4.6 Activity data for lime production (Kemia-Kemi Journal)

Year	Lime production (t)	Year	Lime production (t)	Year	Lime production (t)
1990	1 950 000	2000	1 860 800	2010	1 758 216
1991	1 535 400	2001	2 042 200	2011	1 652 233
1992	1 315 800	2002	2 259 900	2012	1 652 233*
1993	1 718 100	2003	1 919 000	2013	1 652 233*
1994	1 755 400	2004	1 900 300	2014	1 652 233*
1995	1 645 200	2005	1 852 400	2015	1 652 233*
1996	1 716 500	2006	2 212 000	2016	1 652 233*
1997	1 894 400	2007	2 067 197	2017	1 652 233*
1998	1 961 800	2008	1 950 433	2018	1 652 233*
1999	2 017 800	2009	1 681 000	2019	1 652 233*

^{*}due lack of activity data in the YLVA database, the production rate of 2011 is used for the years 2011-2018

Table 4.7 Calculated PCDD/F emissions from lime production

Year	PCDD/F (g I-TEQ)	PCB (kg)	Year	PCDD/F (g I-TEQ)	PCB (kg)
1990	0.15	0.29	2006	0.17	0.33
1991	0.12	0.23	2007	0.16	0.31
1992	0.10	0.20	2008	0.15	0.29
1993	0.13	0.26	2009	0.13	0.25
1994	0.14	0.26	2010	0.14	0.26
1995	0.13	0.25	2011	0.13	0.25
1996	0.13	0.26	2012	0.13	0.25
1997	0.15	0.28	2013	0.13	0.25
1998	0.15	0.29	2014	0.13	0.25
1999	0.16	0.30	2015	0.13	0.25
2000	0.15	0.28	2016	0.13	0.25
2001	0.16	0.31	2017	0.13	0.25
2002	0.18	0.34	2018	0.13	0.25
2003	0.15	0.29	2019	0.13	0.25
2004	0.15	0.29			
2005	0.14	0.28			

Uncertainty analysis and source specific recalculations

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2019

- PM₁₀ and PM_{2.5} fractions have been recalculated from the TSP emissions using the fraction from Guidebook 2019.

Source-specific planned improvements

2022

- There are no methods in the Guidebook for PCDD/F and PCB, therefore we plan to remove these emissions from the reporting. The earlier reported emissions were based on obsolete activity data and UNEP methodologies, which have now been replaced with the AD reported under the GHG inventory.

Glass production (NFR 2A3)

Changes in chapter February 2021 KS & JMP

Source category description

SNAP 040613		GLASS MANUFACTURING		
Not a key		Activities under this sector include manufacturing of glass, glass fibre, glass wool and glasfelt		
category for any pollutants		manufacturing. The history of the industry is presented below:		
		1923-2012 Flat glass production		
		1987-2008 Flat glass production with float technique		
		Until 2008 Container glass production		
		Until 2009 Glass fibre at 2 plants		
		1996-2006 Glass wool		
		Since 2010 Glassfelt at one of the former glass fibre plants		
		Until 2010 Dinnerware 3 plants producing dinnerware deceased the operation strongly		
		Since 2010 Only certain parts of the dinnerware were manufactured in Finland.		
		Since 2015 Only one glass felt manufacturer and some minor glass ovens are left.		
Emissions	Tier	Source of emissions		
TSP, PM10, PM2.5, BC	Т3	Reported since 1990		
Pb, Cd, Cu, Se, Zn	Т3	Reported 1990-2014. Heavy metal emissions from dinnerware production reported by plants.		
SOx		Included to the Energy sector (IE)		
SUX		Emissions due to fuel combustion are reported under the Energy sector		
NH ₃ ,	T3	Reported 1988-2010.		
МП3,		NH₃ emissions from manufacture of glassfibre are reported by the plants		
	T3/T2	Reported since 1990.		
		NMVOC emissions from glass wool are calculated according to Guidebook 2019.		
NMVOC,		NMVOC emissions from glass manufacturing for those plants not reporting their emissions are		
		calculated as the difference of total emissions from the site reported by the plants and default		
		emissions calculated on basis of production volumes.		
	T1/T2	PCDD/F emissions from glass manufacturing are calculated as the difference of total emissions		
PCDD/F		from the site reported by the plants and default emissions calculated on basis of production		
		volumes. (1990-2018)		

The share of glass manufacture emissions to national total emissions and the share of emissions reported by the operators are presented in Table 4.8.

Table 4.8 Contribution of emissions from Glass products to total emissions in 2019

Pollutant	Emissions 2A3	Total emissions	Unit	Share of total	% reported by the
				emissions %	plants
NMVOC	0.002	84.522	Gg	<0.1	99.3
PM _{2.5}	0.004	16.622	Gg	<0.1	0
PM ₁₀	0.005	30.034	Gg	<0.1	0
TSP	0.006	44.952	Gg	<0.1	79.3
ВС	<0.001	3.848	Gg	<0.1	0
PCDD/F	<0.001	12.132	g I-Teq	<0.1	0

Emission trends

Glass production volumes and have decreased to only some percentages from their levels in the 1990's and from the high production volume period in 2005-2008 as presented in Figure 4.5 and in Table 4.9. The large variations in the reported emissions are due to the fluctuating production levels.

Cd emissions originated from raw material processing in dinnerware production. In 2014 raw material processing was relocated abroad and the activity causing Cd emissions was closed down. Note, while the share of air pollutant emissions in national total emissions are generally low, cadmium emissions contributed to 10% of the national total of Cd emissions during 2008-2013.

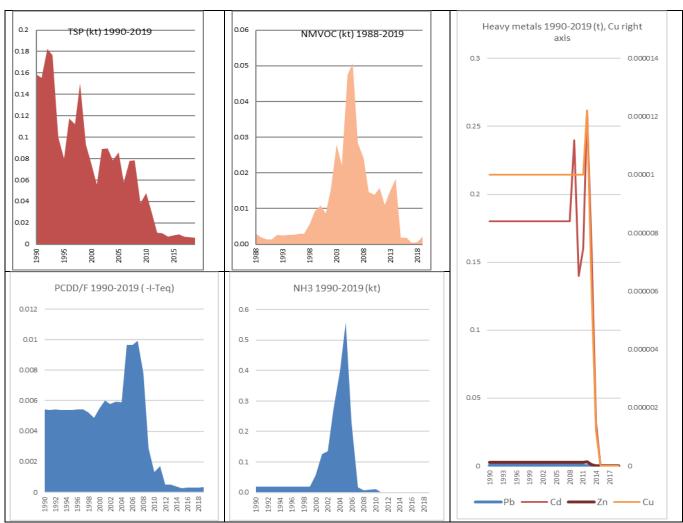


Figure 4.5 NMVOC, particle, ammonia, heavy metal and PCDD/F emissions from Glass production

Table 4.9 Glass production volumes (tonnes/year) from YLVA

Year	Plants that do not report emissions to supervising authorities, used in calculation of NMVOC emissions	All glass production plants, used in calculation of POP and NH3 emissions
1990	137 600*	169 153
1991	137 600*	168 678
1992	137 600*	169 096
1993	137 600*	168 490
1994	137 600*	168 491
1995	137 600*	168 530
1996	137 600	169 100
1997	138 332	169 167
1998	133 394	163 491
1999	118 625	152 725
2000	119 034	171 134
2001	141 592	187 718
2002	131 642	180 908
2003	146 343	186 023
2004	145 838	184 596
2005	257 764	301 203
2006	252 745	301 340
2007	260 019	310 513
2008	189 584	242 782
2009**	55 568	89 751
2010**	6 072	41 359
2011**	8 035	54 111
2012	7 968	15 149
2013	6 855	15 278
2014	3 218	11 437
20 15	1 535	8 717
2016	1 562	9 094
2017	1 819	9 286
2018	1 788	9 928
2019	1 573	10 661

^{*} information collected in the Finnish national BAT Group for glass industry ** emissions have been declining since 2009 due to closure of a large flat glass plant and a container glass plant in 2009.

Methodological issues

Heavy metals

The emissions originate in energy production and are mainly reported by the plants according to the monitoring requirements in the environmental permits. Heavy metal emissions (lead, copper, selenium, zinc and cadmium), cadmium as most significant, origante from raw material processing in dinnerware production in melting of glass and in mixing colours in glass melting. The process of mixing colours was relocated abroad in 2014 and therefore heavy metal emissions ceased from this category and therefore heavy metal emission occurred only in 1990-2004. No fuel based heavy metal emissions occur from these plants due to use of natural gas for the heating of their process ovens.

Particles

TSP emissions are generated in the glass smelting process. TSP emissions are reported by the plants according to their emissions monitoring requirements.

 PM_{10} and $PM_{2.5}$ emissions have been calculated from the TSP emissions using fraction factors of 90% and 80% from TSP (expert estimate SYKE, 2005).

Black carbon emissions have been calcuted using the emission factor 0.062 % of PM2.5 (Guidebook 2019, EEA 2019).

NMVOC

Glass production

For glass manufacture plants do not report their emissions, the emissions are calculated using the emission factor of 0.01 kg/t of glass produced (BREF Manufacture of Glass, Table 4.40, 2013), together with the production rates of the companies. NMVOC emissions are presented in Table 4.11.

Dinnerware production

There is no method presented in the Guidebook for dinnerware production. Due to the varying quality of data reported by the plants it has not been possible to develop a national emission factor.

Glass wool

NMVOC emissions from glass wool are reported by the plants according to the monitoring requirements in the environmental permits.

Glass fibre

There are no emission factors for glass fibre production in the Guidebook.

NH_3

Glass fibre and glass felt (i.e. glass fibre)

Ammonia emissions presented in Table 4.10 are related to the glass fibre production. There has been one glassfibre producer operating under the period of 1988-2010. In 2011 there was a change in the production processes as the production process of glass fibre was converted to a production process of glass felt. Glass felt production does not generate ammonia emissions, therefore no ammonia emissions occur after the year 2010.

For the period of 1988-2010 data reported by the plants have been available only for 2007-2010 and therefore the emission value of 2007 has been used over the whole period of 1988-2006. No production data is available after 2007. The emissions are based on emission data reported by the plants according to the monitoring requirements in their environmental permits.

PCDD/F

Glass fibre, glas wool and dinner ware

The emissions have been calculated using the emission factor of 32 ng I-TEQ/t from UNEP (UNEP, 1999), because no method is presented in the Guidebook. The emissions are presented in Table 4.10. The relevance of emissions will be studied for future submissions.

Table 4.10 NH₃, NMVOC and PCDD/F emissions from production of glass, glass fibre, glass wool and dinner ware manufacturing

Year	NMVOC (kg)	PCDD/F (g I-TEQ)	NH₃ (kt)	Year	NMVOC (kg)	PCDD/F (g I-TEQ)	NH3 (kt)
1990	1.376	0.0054	0.020	2005	47.478	0.0096	0.559
1991	1.376	0.0054	0.020	2006	50.714	0.0096	0.229
1992	2.576	0.0054	0.020	2007	28.349	0.0099	0.018
1993	2.396	0.0054	0.020	2008	24.198	0.0078	0.008
1994	2.576	0.0054	0.020	2009	14.596	0.0029	0.010
1995	2.576	0.0054	0.020	2010	13.938	0.0013	0.011
1996	2.876	0.0054	0.020	2011	15.689	0.0017	NA
1997	2.883	0.0054	0.020	2012	10.986	0.0005	NA
1998	5.634	0.0052	0.020	2013	15.069	0.0005	NA
1999	9.286	0.0049	0.020	2014	18.229	0.0004	NA
2000	10.890	0.0055	0.057	2015	1.815	0.0003	NA
2001	8.616	0.0060	0.125	2016	1.910	0.0003	NA
2002	15.416	0.0058	0.135	2017	0.478	0.0003	NA
2003	27.963	0.0060	0.276	2018	0.578	0.0003	NA
2004	22.158	0.0059	0.399	2019	0.212	0.0003	NA

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to assessment of magnitude and trends have been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2013

NMVOC: Change of method to the EF from BREF for Manufacture of Glass (previously,1990-2011, calculated with the EF of 0.005 kg/t from USEPA AP-42 (USEPA, 1990) and AD based on information collected in the Finnish national BAT Group for glass industry (Conclusions of Finnish BAT group for Glass Industry, 2001). The same value was used for all the years.

2014

The emission factor for NMVOC emissions and activity data were revised for the whole time series.
 Previosly, the same activity data was used for whole time series, since 2014 submission production rates of the companies are used.

2015

• NH₃ emissions from glass wool production were included.

2018

- Notation key corrections 2010-2016 for CO (IE to NA)
- Allocation correction for Pb and Zn (1990 to 1A2fl)
- Se 1990-2007 and 2012-2014 completion of the time series for the missing emissions
- Se 2015-2016 notation key IE to NA 2019
- All heavy metal (Cd, Pb, Cu, Se, Zn) emissions reported in 1990-2014 under NFR 2A3 are based on plant reported data and according to information in the plant's environmental permit, also lead, copper, selenium and zinc emissions originate from smelting of glass, not only cadmium. The process of mixing colours was relocated abroad in 2014 and therefore heavy metal emissions ceased from this category. No fuel based heavy metal emissions occur from these plants due to use of natural gas for the heating of their process ovens. The description provided in the IIR submitted in 2020 has already been updated to the draft of the 2021 IIR to reflect this response to the TERT.

Source-specific planned improvements

None.

Quarrying and mining of minerals other than coal (NFR 2A5a)

Changes in chapter February 2021 JMP KS

Source category description

SNAP 040616 and 040623 Not a key category for any pollutants		EXTRACTION OF MINERAL ORES and QUARRYING includes copper and zinc, talc manufacturing, limestone and quartzite quarrying
Emissions	Tier	Source of emissions
NOx, SOx, CO and heavy metals (Pb, Cd, As, Cr, Cu, Ni, Zn)		These emissions are related to combustion and reported under the Energy sector.
Particles (TSP, PM ₁₀ , PM _{2.5})	Т3	TSP reported by the plants, fraction factors used for PM10 and PM2.5

Metal and mineral ore mining activities and developing metallurgical technology and mining equipment have a long history in Finland. Metals and minerals present in the bedrock are mined on basis of their composition, extent, and geographical location of the deposit, operating expenditures, and global market prices. To open a mine, an environmental permit is needed.

Mining of metallic minerals in Finland includes iron, chromium, copper, nickel, zinc, gold, vanadium, titanium, lead, cobalt, silver, tungsten, and molybdenum, along with ores containing rare-earth elements. In 2018, there were 11 metallic mineral mines (Tables 4.12 and 4.13) operating in Finland. Eight of these were gold mines, and the other mines produced chromium, copper, nickel, zinc, sulphur, cobalt, silver and platinum group metals (PGM). In addition, three mines are commencing operation (GTK, Geolocigal Survey of Finland, 2016).

Industrial minerals are excavated for the production of, for example, building materials, fertilisers, dishes, paper, plastics, electronics, cosmetics, medicines, foodstuffs, and clean drinking water. Industrial stones are crushed and ground, then used as raw material for stone wool, cement, and similar products. The major industrial minerals mined in Finland are carbonates, apatite and talc².

Significant processing and refining of copper and nickel concentrates in Harjavalta, zinc in Kokkola, chromium in Kemi, and of iron in Raahe.

The shares of emissions of national total emissions and shares emissions reported by the operators are presented in Table 4.11.

Table 4.11 Contribution of Quarrying and mining of minerals other than coal (NFR 2A5a) in 2019

Pollutant	Emissions from Quarrying and mining of minerals other than coal	Total emissions	Unit	Share of total emissions %	% reported by the plants
PM2.5	<0.001	16.622	Gg	<0.1	0
PM10	0.003	30.034	Gg	<0.1	0
TSP	0.006	44.952	Gg	<0.1	83

² http://en.gtk.fi/informationservices/mineralproduction/index.html

The structure of the Finnish mining industry is presented in Figure 4.6 and the mining sites in Figure 4.7.

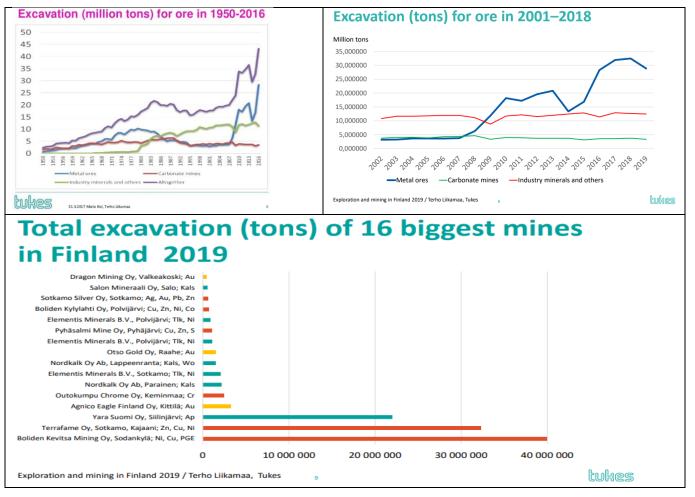


Figure 4.6. Excavation for ore in Finland

https://tukes.fi/documents/5470659/22595939/Presentation+1+Review+of+mining+authority+on+exploration+and+mining+industry+in+Finland+in+19.5.2020/43e0bd40-91a9-f69f-aa2f-00ad85a5d87b/Presentation+1+Review+of+mining+authority+on+exploration+and+mining+industry+in+Finland+in+19.5.2020.pdf

Table 4.12 Mining in Finland 2018 (Geological Survey of Finland 22.11.2019) www.en.gtk.fi

Mining in Finland 2018

Group	Mines/ Quarries	Total output (tonnes)	Total ore output (tonnes)	Ore %	Leftover rock (tonnes)
Metallic ores	11	95 177 969	32 468 824	34 %	62 709 145
Carbonate rocks	14	5 230 471	3 726 313	71 %	1 504 158
Other industrial minerals*	13	29 135 674	12 369 776	42 %	16 765 898
Industrial rocks	4	266 577	258 499	97 %	8 078
Natural stones**	5	296 306	192 294	65 %	104 013
In total	46	130 106 997	49 015 706	38 %	81 091 29

^{*} Includes also gemstones

^{**} Dimension stones included in the Finnish Mining Law

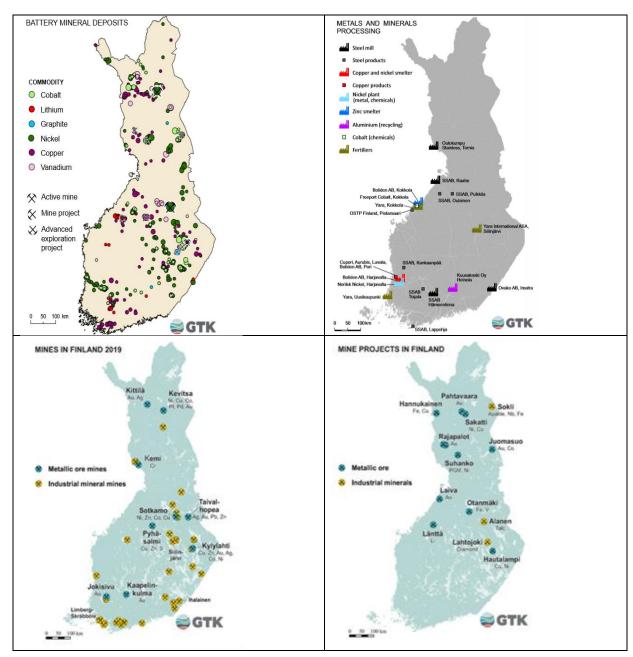


Figure 4.7 Battery mineral deposits, Metals and minerals processing, Mines, Mine projects Geological Survey of Finland (2020) https://www.gtk.fi/en/services/data-sets-and-online-services-geo-fi/mining-maps/

Table 4.13 Mining in Finland 2018 (Geological Survey of Finland, www.en.gtk.fi)

Mine/Quarry	Locality	Commodity	Operator	Total output (t)	Total ore output (t)
Kittilä	Kittilä	Au	Agnico Eagle Finland	2 656 715	1 563 612
Jokisivu	Huittinen	Au	Dragon Mining Oy	392 738	244 383
Orivesi	Orivesi	Au	Dragon Mining Oy	101 885	69 291
Pampalo	Ilomantsi	Au	Endomines Oy		170 389
Laiva	Raahe	Au	Nordic Gold Oy	2 124 866	319 261
Taivalhopea	Sotkamo	Ag, Au, Pb, Zn	Sotkamo Silver Oy	203 509	0
Kevitsa	Sodankylä	Ni, Cu, Co, PGM,	FQM Kevitsa Mining	41 428 452	7 932 917
Kylylahti	Polvijärvi	Cu, Co, Ni, Zn	Kylylahti Copper Oy	792 619	791 424
Kemi	Keminmaa	Cr	Outokumpu Chrome	3 318 138	2 211 284
Pyhäsalmi	Pyhäjärvi	Zn, Cu, S	Pyhäsalmi Mine Oy	1 247 536	1 247 536
Sotkamo	Sotkamo, Kajaani	Zn, Cu, Ni	Terrafame Oy	42 277 065	17 910 496
Total: 11				95 177 969	32 468 824

PGM = platinum group metals, Kv=quartz

Emission trends

The emission trends follow closely the quarrying and mining volumes (Figure 4.8).

In 2013 the particle peak is due to a fault situation in one mine that has had problems with environmental emissions from time to time. The mine has been on operation since 2011 but has been closed down temporary since 2018. Since 2013 to operation in the mine have been declining from year to year so since 2015 the emissions are a hundredth part of the earlier emission level.

Figure 4.8 Particle emissions from mining

Methodological issues

Emissions are mainly reported by the plants according to the monitoring requirements in the environmental permits. When no plant specific data is available, emissions have been calculated as presented below.

Activity data is presented in Table 4.14. Note that there is no activity data available for the use of the new calculation method presented in Guidebook 2019 (tier 2).

Particles

Most of the TSP emissions are generated in zinc and copper ore quarrying and preparation and are mainly reported by the plants according to their monitoring requirements in their environmental permits. Particle fractions are calculated with Guidebook 2019 fraction factors. The emissions are presented in Table 4.15. For plants that do not report emissions, the emissions are calculated using emission factors from the Guidebook 2019.

Table 4.14 Mining of copper and zinc ores: activity data (First Quantum Minerals Ltd)

Year	Amount of mined copper ore (1000 t)	Amount of mined zinc ore (1000 t)	Year	Amount of mined copper ore (1000 t)	Amount of mined zinc ore (1000 t)
1990	1439	357	2010	1307	191
1991	1575	389	2010	1245	205
1992	1350	213	2012	1120	163
1993	1402	156	2012	1321	138
1994	1311	149	2013	1321*	138*
1995	1087	119	2014	1321*	138*
				-	
1996	1076	190	2016	148	10.8
1997	1013	221	2017	135	17.4
1998	988	216	2018	119	22.7
1999	1020	143	2019	80	12
2000	1211	118			
2001	1031	128			
2002	996	167			
2003	1325	246			
2004	1378	236			
2005	1378	257			
2006	1372	227			
2007	1209	247			
2008	1182	177			
2009	1298	172			
*for th	e years 2014 and 2015 the amo	unts of mined ores are not availa	ble, therefore	2013 data has been us	ed

20

Table 4.15 Particle emissions from quarrying and mining of minerals other than coal

Year	PM _{2,5} (t)	PM ₁₀ (t)	TSP (t)	Year	PM _{2,5} (t)	PM ₁₀ (t)	TSP (t)
1990	6.74	44.91	91.37	2010	5.62	37.45	76.19
1991	7.37	49.11	99.90	2011	5.44	36.24	73.73
1992	5.86	39.07	79.48	2012	4.81	32.07	65.24
1993	5.84	38.94	79.22	2013	5.47	36.45	74.16
1994	5.48	36.50	74.26	2014	5.47	36.45	74.16
1995	4.52	30.16	61.36	2015	5.47	36.45	74.16
1996	4.75	31.65	64.39	2016	0.13	0.89	1.81
1997	4.63	30.85	62.76	2017	0.12	0.77	1.57
1998	4.51	30.10	61.23	2018	0.13	0.87	1.76
1999	4.36	29.09	59.18	2019	0.08	0.50	1.02
2000	4.98	33.22	67.58				
2001	4.35	28.97	58.94				
2002	4.36	29.07	59.13				
2003	5.89	39.27	79.90				
2004	6.05	40.35	82.10				
2005	6.13	40.88	83.16				
2006	6.00	39.97	81.31				
2007	5.46	36.40	74.05		_		
2008	5.10	33.97	69.11				
2009	5.51	36.75	74.77				

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Part 3 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2018

- Fuel combustion related emissions were reallocated in the 2018 submission under NFR1A2gviii 2019
- Particle fractions are calculated with Guidebook 2016 fraction factors. 2021
- Particle fractions are calculated with Guidebook 2019 fraction factors.

Source-specific planned improvements

None

Changes in chapter
February 2021 JMP KS

Source category description

SNAP 040624		PUBLIC WORKS AND BUILDING SITES
Not a key category for any		Activities include manufacturing of light expanded clay aggregate (LECA), granulates and asphalt mixing plants.
pollutants		Emissions from rock-crushing plants are included in the emissions of asphalt stations in cases where the activity is required to have an environmental permit. Small rock-crushing plants are not included in the inventory.
Emissions	Tier	Source of emissions
TSP, PM ₁₀ , PM _{2.5}	T2	calculated using GB19

Process emissions from asphalt mixing plants are reported under NFR 2A5b and fuel combustion related emissions under NFR 1A2gviii.

Construction and demolition is a minor source of particle emissions.

The shares of total emissions and of emissons reported by the plants are presented in Table 4.16

Table 4.16 Contribution of Construction and demolition (NFR 2A5b) to total emissions in 2019

Pollutant	Emissions from Construction and	Total emissions	Unit	Share of total	% reported by the
	demolition			emissions %	plants
PM _{2.5}	0.003	16.622	Gg	<0.1	0
PM ₁₀	0.011	30.034	Gg	<0.1	0
TSP	0.032	44.952	Gg	<0.1	7

Emission trends

Particle emission trend is presented in Figure 4.9. The emissions have decreased since the early 2000s due to increased abatement.

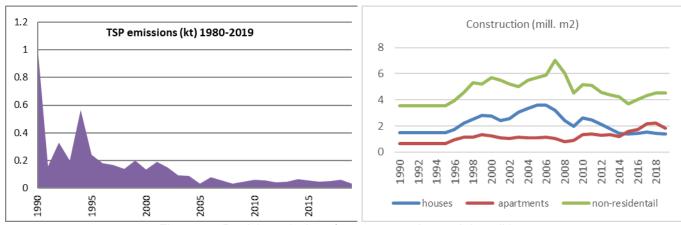


Figure 4.9 Particle emissions from construction and demolition

Methodological issues

Particle emissions

Emissions are calculated as described in Guidebook 2019. The same assumptions for duration of construction and for control efficiency of applied emission reduction measures (CE) as presented in the Guidebook 2019 have been used also for Finland. For PE index value of 128 (wet) is used. The same silt content (20%) is used in the calculation as is assumed for Germany in Guidebook 2019. In Finland only total constructed area (see Table 4.17a) is available. So as described in the Guidebook 2019 affected area

is estimated using 0,8 m² footprint are per m² utility floor area. In Finland information of constructed area (provided by Statistic Finland) is available from 1995 onwards, for years 1990-1994 has been used same value as for year 1995.

Emissions from road construction are calculated as described in the Guidebook 2019. Activity data presented in Table 4.17b is from yearly statistics of The Finnish Transport Infrastructure Agency.

Volumes of constructed houses, apartment buildings and non-residential buildings used as activity data are presented in Table 4.17a.

Table 4.17a Volumes of constructed houses, apartment buildings and non-residential buildings (Statistics Finland).

Year	constructed houses (m²)	constructed apartment buildings(m²)	non-residentail construction (m²)
1990*	1508775	658752	3560360
1991*	1508775	658752	3560360
1992*	1508775	658752	3560360
1993*	1508775	658752	3560360
1994*	1508775	658752	3560360
1995	1508775	658752	3560360
1996	1745638	950882	3953983
1997	2239295	1156117	4564231
1998	2512920	1141342	5326516
1999	2827773	1319407	5209074
2000	2772252	1253966	5688264
2001	2401019	1074854	5505425
2002	2562980	1040785	5192928
2003	3074723	1125068	5007556
2004	3336142	1091668	5512145
2005	3618269	1072646	5711187
2006	3571248	1151543	5912508
2007	3205658	1059417	7041046
2008	2404061	787076	6028113
2009	1956191	918298	4529770
2010	2629159	1361794	5166918
2011	2465305	1373480	5131192
2012	2126059	1299118	4579609
2013	1760010	1328529	4399736
2014	1453438	1174278	4246316
2015	1391401	1579064	3711899
2016	1419991	1736980	4044515
2017	1514086	2157886	4322511
2018	1441103	2231769	4532115
2019	1375233	1849109	4540234

Statistics have been available only from 1995 onwards, for years 1990-1994 values from year 1995 has been used

Table 4.17b Length of new roads (only new mains roads i.e highways) in Finland 1990-2019 (Road statistics, The Finnish Transport Infrastructure Agency)

Years	New roads (km)	Years	New roads (km)	Years	New roads (km)
1990	208	2000	33	2010	45
1991	67	2001	161	2011	37
1992	305	2002	88	2012	0
1993	166	2003	110	2013	0
1994	811	2004	98	2014	39
1995	215	2005	0	2015	21
1996	122	2006	74	2016	0
1997	92	2007	27	2017	31
1998	41	2008	2	2018	0
1999	136	2009	34	2019	0

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2019

- The whole time series was recalculated using Guidebook 2016 method.
- Heavy metal emissions reported currently under this NFR were removed under energy.

2020

- Guidebook 2019 method equals to that of Guidebook 2016.

Source-specific planned improvements

None.

Storage, handling and transport of mineral products (NFR 2A5c)

Changes in chapter February 2021 JMP,KS

Source category description

SNAP 040900		STORAGE, HANDLING AND TRANSPORT OF MINERAL PRODUCTS
Not a key category for any pollutants		Activities included here are storage and handling of aluminoxide, bentonite, clay, cement, coal, coke, fly ash and kaolin
Emissions	Tier	Source of emissions
TSP, PM ₁₀ , PM _{2.5}	T2	Calculated

The category is a minor source of particle emissions. The shares of emissions are presented in Table 4.18

Table 4.18 Contribution of Storage, handling and transport of mineral products (NFR2A5c) to total emissions and the shares of emissions reported by the plants in 2019.

Pollutant	Emissions from Storage, handling and transport of mineral products	Total emissions	Unit	Share of total emissions %	% reported by the plants
PM _{2.5}	0.023	16.622	Gg	0.1	0
PM ₁₀	0.22	30.034	Gg	0.7	0
TSP	0.57	44.952	Gg	0.57	0

Emission trend

The emission trend is presented in Figure 4.10

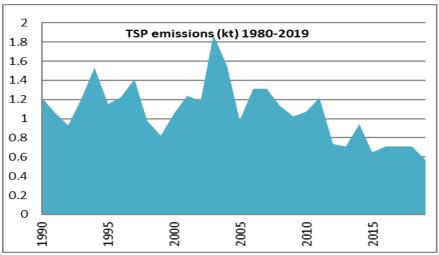


Figure 4.10 Particles from 2A5c

Methodological issues

Particle emissions are calculated using emission factors (TNO, 2002) presented in Table 4.19. There are no methods in the Guidebook for the different species presented below, therefore we prefer to use the specific fraction factors of TNO.

Table 4.19 TSP. PM₁₀. PM_{2.5} emission factors for NFR 2A5c storage and handling.

Source	EFs t/t (TNO, 2002)							
Source	TSP	PM ₁₀	PM _{2.5}					
Storage and handling, aluminoxide	0.0002	0.00008	0.000008					
Storage and handling, bentonite	0.00004	0.0000128	0.0000016					
Storage and handling, clay	0.000025	0.000008	0.000001					
Storage and handling, cement	0.00001	0.00005	0.0000005					
Storage and handling, coal	0.00015	0.00006	0.000006					
Storage and handling, coke	0.00011	0.000044	0.0000044					
Storage and handling, fly ash	0.0001	0.000032	0.000004					
Storage and handling, kaolin	0.00004	0.0000128	0.0000016					

Activity data collected from Finland Custom Statistics (ULJAS), the Confederation of Finnish Construction Industries and the Finnish Energy Industries Federation is presented in Table 4.20.

TSP, PM₁₀ and PM_{2.5} emissions from storage, handling and transport of mineral products are presented in Table 4.21.

Table 4.20. Activity data for storage and handling of minerals

AD (t/m2)	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	Reference
Amount of imported											ULJAS
alumina	3317	1134	1524	5781	3537	1669	3366	2353	2006	2564	
Amount of											ULJAS
imported											
bentonite	7841	7583	6273	8808	12583	18688	22722	48491	56864	53935	
Amount of											The Confederation of
handled clay as											Finnish Construction
tiles and light											Industries + Production
gravel	413000	490000	446000	431000	407000	392000	360000	413090	416715	444477	amount of light gravel (

											VAHTI)
Amount of used											VAHTI + ULJAS
cement as											
production and											
import	1917740	1513330	1254919	1023578	1058023	1106527	1217959	1433304	1627917	1767248	
Amount of											ULJAS
imported coal	6101614	5174521	4264324	5953057	8104916	5887526	6252607	7474226	4727631	3596331	
Amount of											The Federation of Finnish
produced and											Technology Industries +
imported coke	1273047	1175507	1184466	1291656	1326901	1083946	1067868	1106694	1119537	1267754	ULJAS
Amount of											Finergy
produced fly ash	939702	939702	939702	939702	939702	739563	959487	893000	619000	605000	
Amount of											ULJAS
imported kaolin	967917	937236	1017452	1175689	1328205	1378081	1198212	1402209	1359976	1249452	

AD (t/m2)	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	Reference
Amount of											ULJAS
imported											
alumina	2179	2204	2042	1904	2220	2659	2327	3297	2350	1733	
Amount of											ULJAS
imported											
bentonite	30609	50898	27758	26569	27321	26395	32520	37739	31445	19334	
Amount of											The Confederation of
handled clay as											Finnish Construction
tiles and light											Industries + Production
gravel											amount of light gravel
	502238	510000	492841	512000	492000	479986	482598	487106	448689	298194	according to VAHTI
Amount of											VAHTI + ULJAS
used cement as											
production and											
import	1939579	1762180	1493126	1613900	1756330	904064	2027988	2443914	2167516	1358273	
Amount of											ULJAS
imported coal	5072701	6174440	5788973	10145016	8283891	4724395	6684023	6676418	5677080	5941051	
Amount of	1327170	1306480	1365237	1390807	1417438	1398969	1390541	1438165	1395458	245805	The Federation of Finnish
produced and											Technology Industries +
imported coke											ULJAS
Amount of											Finergy
produced fly											
ash	590000	811000	877800	1142200	713909	541376	740483	706218	503602	541056	
Amount of											ULJAS
imported											
kaolin	1493786	1301200	1207343	1305240	1301806	1144335	1261699	1155040	1147686	739685	

AD (t/m2)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	
Amount of											ULJAS
imported alumina	2421	2423	2478	2198	2573	2834	3078	3700	3624	2929	
Amount of											ULJAS
imported											
bentonite	16084	21318	25469	21227	26449	43347	35630	24140	31970	34100	
Amount of											The Confederation of Finnish
handled clay as											Construction Industries + Production
tiles and light	42356	43859	38928		35280	35280	35280	35280		35280	amount of light gravel according to
gravel	3	4	0	352800	0	0	0	0	352800	0	VAHTI
Amount of used											VAHTI + ULJAS
cement as											
production and	18077	19854	17928		17035	15957	18449	21063		45309	
import	47	41	16	1651613	71	05	20	50	555258	2	
Amount of	59020	69541	38925		54215	35003	38968	38553	398229	30775	ULJAS
imported coal	04	91	98	4022356	59	30	30	00	7	38	
Amount of											The Federation of Finnish Technology
produced and	44017	44340	31913								Industries + ULJAS
imported coke	0	7	2	359	437	480	343	271	337	320	
Amount of	69225	53773	53773	537737	53777	53777	71500	71500	715000	71500	Finergy

produced fly ash	6	7	7		37	37	0	0		0	
Amount of	94480	93654	86024		74543	69696	66080	63978		52602	ULJAS
imported kaolin	9	4	3	628512	8	2	0	0	604098	3	

Table 4.21 Particle emissions from storage, handling and transport of mineral products.

Year	PM _{2,5} (t)	PM ₁₀ (t)	TSP (t)	Year	PM _{2,5} (t)	PM ₁₀ (t)	TSP (t)
1990	48.9	477.8	1218.4	2010	43.0	420.6	1070.5
1991	42.7	415.9	1064.9	2011	48.8	479.9	1215.3
1992	37.3	361.1	928.9	2012	29.6	288.4	736.4
1993	48.0	468.3	1198.6	2013	28.5	278.1	708.9
1994	61.3	600.7	1530.8	2014	37.1	363.9	924.3
1995	46.2	451.3	1153.4	2015	25.5	247.8	633.8
1996	49.0	477.7	1222.0	2016	28.7	277.9	711.8
1997	56.8	555.0	1415.3	2017	28.5	276.5	707.3
1998	39.3	382.5	978.0	2018	28.4	275.9	709.4
1999	33.0	320.2	820.8	2019	22.8	220.0	570.0
2000	42.6	415.0	1059.3				
2001	49.6	484.3	1235.9				
2002	47.5	462.9	1183.4				
2003	75.0	735.8	1871.6				
2004	62.3	612.2	1553.4				
2005	39.5	385.9	985.1				
2006	52.8	516.7	1314.2				
2007	52.9	518.1	1315.3				
2008	45.7	447.8	1136.0				
2009	41.1	403.6	1024.0				

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2009

• Emissions from storage, handling and transport of mineral products were included in the inventory since

Source-specific planned improvements

2022

 We are using the material specific TNO EFs which we consider more precise than the T1 EFs in Guidebook 2019. However, we plan to compare the results of the two methods in the near future.

Other Mineral products (NFR 2A6)

Changes in chapter	•	
January 2020	JMP KS	

Source category description

SNAP 040613z	OTHER (MINERAL PRODUCTS), BATTERIES MANUFACTURING, LIMESTONE AND DOLOMITE USE, BRICKS AND
040615	TILES (DECARBONIZING), FINE CERAMIC MATERIALS (DECARBONIZING)
040618	
040628	
040629	

No activities falling under NFR 2A6 occur currently in Finland.

4.3 Chemical Industry (NFR 2.B)

Changes in chapter February 2021 KS&JMP

Source category description

NFR	Chemical Industy	Description		Emissions
2B1	Ammonia production	There has been no ammo	There has been no ammonia production in Finland since 1993.	
2B2	Nitric acid production		fourth was closed down in 1992. In 2004 a new plant which was closed down in 2005.	NO _x
	Other chemical industry			
	040401	Sulfuric acid		
	040406	Ammonium phosphate		
	040407	NPK fertilisers		
	040410	Titanium dioxide		
	040413	Chlorine production		
	040414	Phosphate fertilizers		
	040416	Other	Calcium Carbonate manufacturing	
	040416	Other	Silicon wafer manufacturing	
	040416	Other	Production of oxygen, nitrogen and hydrogen	
	040416	Other	Al- and Fe-chemicals manufacturing	
	040416	Other	Manufacturing of ion exchange and chromatographic	
	040410	Other	resins and special polymers	NOx, NMVOC,
	040416	Other	Pigments manufacturing	SOx,
	040416	Other	Manufacturing of explosives	NH3, TSP,
	040416	Other	Fertilizer manufacturing	PM10,
2B10a	040416	Other	Manufacturing of cobolt based special chemicals	PM2.5,
22200	040416	Other	Hydrogenperoxide plant	BC, Pb,
	040416	Other	Manufacturing of natrium silicate	Hg, Cr,
	040416	Other	Potassium sulphate manufacturing	Cu,
	040416	Other	Formic acid and hydrogen peroxide manufacturing	Ni, Zn,
	040416	Other	Manufacturing of viscose staple fibres and by-products	PCDD/F, HCB,
	040501	Ethylene		
	040506	Polyethylene Low		
		Density		_
	040507	Polyethylene High		
	040500	Density Polypropylene		-
	040509 040511	Polystyrene		+
	040511	Styrene butadiene		-
	040512	Styrene-butadiene latex		-
	040513	Other (phytosanitary,)	Entzyme production	-
	040527	Other (phytosanitary,)	Manufacturing of techno-chemical products	-
	040527	Other (phytosanitary,)	Manufacturing of benzene, cumene and phenols	-
	040327	Other (phytosanitary,)	I manaracturing of benzene, cumene and phenois	1

NFR	Chemical Industy	Description		Emissions
	040527	Other (phytosanitary,)	Drag reducing additive production	
	040527	Other (phytosanitary,)	Manufacturing of organic base chemicals	
	040527	Other (phytosanitary,)	Manufacturing of tall oil	
	040527	Other (phytosanitary,)	Manufacturing of organic fine chemicals	
	040527	Other (phytosanitary,)	Manufacturing of pharmaceuticals	
	040527	Other (phytosanitary,)	Manufacturing of titanium dioxide pigments	
	040527	Other (phytosanitary,)	Manufacturing of lignosulphonate products	
	040527	Other (phytosanitary,)	Cleaning of solvents and manufacturing of solvent	
	040327	Other (phytosanitary,)	mixtures	
	040527	Other (phytosanitary,)	Manufacturing of biocides and other agricultural	
	040327	Other (phytosanitary,)	chemicals	
	040527	Other (phytosanitary,)	Manufacturing of carboxymethylcellulose	
2B10b	Storage, handling and			NMVOC, TSP,
	transport of chemical	Chemical and fuel storage	es, storage and handling of phosphates.	PM ₁₀ , PM _{2.5}
	products			F 1V110, F 1V12.5

Methodological issues

Emissions of those plants that report their emissions to the supervising authorities³ according to the monitoring requirements in the environmental permits are in most cases reported as aggregated for the whole plant and not by individual processes. It has not been possible to make a complete split between emissions from fuel based and non-fuel-based sources in the air emissions inventory system. In cases where it has been possible to separate fuel combustion emissions from process emissions, these are reported separately under NFR 2B categories. For those plants that report only total emissions, the split is based on the default emissions calculated on basis of fuel consumption which is subtracted from the emissions reported by the plants and then reported under the NFR 1A2c. In case it has not been possible to make a split between energy and process related emissions, all emissions are reported under NFR 1A2c.

Ammonia production (NFR 2B1)

Changes in chapter
February 2021 KS&JMP

Source category description

		AMMONIA PRODUCTION
SNAP 040403		
		Ammonia was produced between the years 1951-1992 in Finland. The annually produced amounts
Not a key category for	Tier	of ammonia were between 12-30 kt. Ammonia was mainly used as raw material of fertilizers and in
any pollutants	T1	the production of nitric acid.

Emission trends

The magnitude of NMVOC emissions between 1990-1992 was around 0.01-0.03 kilotons.

 NH_3 , NO_x and CO emissions have been included in the inventory in the 2020 submission.

³ The emissions are available from the YLVA database.

Methodological issues

Activity data

Ammonia was produced during the years 1990-1992 as presented in Table 4.22a.

Table 4.22a. Estimates of Ammonia production in 1990-1992 (Expert estimate from Regional Environmental Centre, 2010)

Years	produced ammonia (t)
1990	30 000
1991	30 000
1992	12 000

NH_{3.} NO_x, CO, NMVOC

Emissions are calculated using emission factors presented in Guidebook 2019 (Table 4.23b).

Table 4.22b. NH₃, NO_x, CO and NMVOC emissions from ammonia production

	NH ₃ (tonnes)	NOx (tonnes)	NMVOC (tonnes)	CO (tonnes)
1990	1.5	30	30	0.18
1991	1.5	30	30	0.18
1992	0.6	12	12	0.072

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 5 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2019

- Information of ammonia production volumes 1990-1992 added to the IIR
- NH₃ emissions in 1990-1992 were included in the inventory and documented in the IIR.

2020

• NO_x, NMVOC and CO emissions in 1990-1992 were included in the inventory

Source specific planned improvements

None

Changes in chapter	
February 2021 KS&JMP	

Source category description

SNAP 040402		NITRIC ACID PRODUCTION
		Nitric acid is currently produced at three sites.
Not a key cat	egory for	
any pollutants In 1990–1992 there were four which was closed down in 2009 7.5 bar). Two of the plants are		In 1990–1992 there were four plants producing nitric acid. In 2004 a new plant replaced an older plant, which was closed down in 2005. The operating plants are single-stage medium pressure plants (3.8, 6.5 and 7.5 bar). Two of the plants are situated at the same site and the produced nitric acid is mainly used for the integrated fertiliser production.
		Total annual total production volume has varied from 430 to 620 Gg of nitric acid per year.
Emissions	Tier	Source of emissions
NO _x		Emissions are reported by the plants according to their reporting obligations in the environmental permits and available in YLVA database. NOx emissions include NO ₂ , NO, N ₂ O ₃ , N ₂ O ₄ , HNO ₃ compounds.

Air pollutant emissions from nitric acid production vary according to the production volumes over the years. The allocation of activities has been changed over the years and is not currently consistent in the time series.

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.23.

Table 4.23 Contribution of nitric acid production to total emissions in 2019.

Pollutant	Emissions from other mineral products	Total emissions	Unit	Share of total emissions %	% reported by the plants
NO _x (as NO ₂) 0.432		119.817	Gg	0.4	100

Emission trend

The emission trend is presented in Figure 4.11.

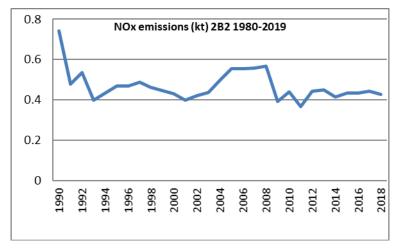


Figure 4.11 NO_x emissions from nitric acid production

Methodological issues

Emissions of those plants that report their emissions to the supervising authorities⁴ according to the monitoring requirements in the environmental permits are in most cases reported as aggregated for the whole plant and not by individual processes. It has not been possible to make a complete split between emissions from fuel based and non-fuel-based sources in the air emissions inventory system.

⁴ The emission data is available from the YLVA database after it has been checked and approved by the authorities.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

None.

Source-specific planned improvements

None.

Adipic acid production (NFR 2B3)

SNAP 040521	ADIPIC ACID PRODUCTION
040321	Adipic acid production has not occurred in Finland in 1980-2019.

Carbide production (NFR 2B5)

SNAP 040412	CARBIDE PRODUCTION
040412	Carbide production has not occurred in Finland in 1980-2019.

Titanium dioxide production (NFR 2B6)

Changes in chapter
February 2021 KS&JMP

Source category description

SNAP 040410 Not a key category for any pollutants		TITANIUM DIOXIDE PRODUCTION
		One plant has produced titanium dioxide pigments since 1957. These pigments have been used in paint and cosmetics industry and also in manufacture of printing inks. The annual production rate of TiO2 is currently 130 000 tonnes.
Emissions	Tier	Source of emissions
TSP, PM ₁₀ , T3 PM _{2.5} , BC		Particle emissions are reported by the plant according to its environmental monitoring programme from dry kiln.

Emission trend

The particle emission trend is presented in Figure 4.12. The emissions since 2017 are one tenth to the emissions in the 2000s due to emissions reported by one plant, that made major changes in production in 1997, so particle emissions declined.

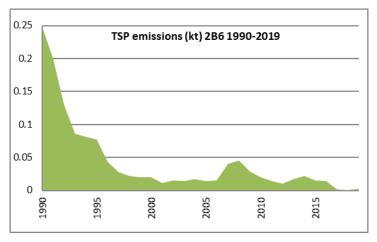


Figure 4.12 TSP emission trend

The shares of emissions of total emissions and the shares reported by the plants are presented in table 4.24.

Table 4.24 Contribution of Titanium dioxide production (NFR 2B6) to total emissions in 2019.

Pollutant	Emissions from Titanium dioxide production	Total emissions	Unit	Share of total emissions %	% reported by the plants
PM2.5	0.002	16.622	Gg	<0.1	0
PM10	0.002	30.034	Gg	<0.1	0
TSP	0.002	44.952	Gg	<0.1	100
BC	<0.001	3.848	Gg	<0.1	0

Methodological issues

Particles

TSP emissions are reported by the TiO2 manufacturer. PM_{10} and $PM_{2.5}$ emissions have been calculated from the TSP emissions using national fraction factors of 100% from TSP (Karvosenoja, 2002). There are no methods or fraction factors in the Guidebook, so the shares of small particles are assumed TSP: PM_{10} : $PM_{2.5}$ = 1:1:1.

For black carbon the Guidebook 2019 emission factor of 1.8 % of $PM_{2.5}$ emissions has been used. This Tier 1 emission factor is an average emission factor for chemical industry.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

None.

Source-specific planned improvements

None.

Soda ash production (NFR 2B7)

Changes in chapter
February 2020 JMP, KS

SNAP 040619	SODA ASH PRODUCTION AND USE NFR 2B7 SODA ASH PRODUCTION
	Soda ash has not been produced in Finland in 1990-2019.
	Soda ash is used in Finland in the production of tile, steel, calcium chloride, phosphates, mineral wool and in the energy industry. Emissions from soda ash use in these sectors are reported by the plants according to the monitoring programmes in their environmental permits (available in YLVA).
	The emissions are allocated under the NFR category of the main activity of these plants using soda ash and it is not possible to report the emissions separately under NFR 2B7.

Other chemical industry (NFR 2B10a)

Changes in chapter February 2021 JMP, KS

Source category description

NFR 2B10a is a key category for SO_x, NMVOC, PM_{2.5}, Hg and HCB, Table 4.25.

Table 4.25 Key categories and tier level of methods for the Agriculture inventory

Process			NMVOC		PM2.5		Hg	Tier	НСВ	Tier
Manufacturing of potassioum sulphate									L1, T1	T3
Production of oxygen, nitrogen and hydrogen Manufacturing of ion exchange and chromatographic resins and special polymers Manufacturing of explosives Manufacturing of cobolt based special chemicals Hydrogen peroxide plant Manufacturing of fine chemicals Production of polyethylene low density, high density polypropylene, polystyrene Production of styrene butadiene and styrene-butadiene latex Pesticide production			L1	T3					22) 12	
Manufacturing of techno-chemical products Production of sulphuric acid Production of fertilizers Production of cobolt based chemicals Production of pigments used in paper making Production of techno-chemical products	(L1, T1),	Т3								
Production of sulphuric acid Production of fertilizers Production of phosphates Production of PVC Production of inorganic chemicals, ethylene, polyethylene, other organic chemicals and chemicals products					(L1),	ТЗ				
Chlorine production using the mercury process							(L1, T1)	T3		

SNAP		SULPHURIC ACID
040401		
		Number of plants (<5)
		Production capacity: 1 000 000 t sulphuric acid
Emissions		Source of emissions
NOx, SOx,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
TSP,		
PM10,		
PM2.5,		
BC,		

SNAP		AMMONIUM PHOSPHATE
040406		
		Number of plants (<5) Phosphoric acid is produced from phosphorus containing minerals, the most important mineral is phosphorite (=apatite 3Ca ₃ (PO ₄) ₂ *CaF ₂). There are two different methods to produce phosphoric acid; thermal and wet process; in Finland the wet process has been used. In the wet process the raw phosphate is dissolved in to sulphur acid and the released phosphoric acid is separated from calcium sulphate.
		Production capacity: 300 000 t phosphoric acid and polyphosphoric acids
Emissions		Source of emissions
SOx	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
NOx		reported by one plant in year 1990, should be allocated under the energy sector

		NPK FERTILISERS
SNAP		
040407		Number of plants (<5)
		Production capacity: 1.5 million t mineral or chemical fertlisers (including N,P,K)
Emissions		Source of emissions
NH ₃ ,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
NMVOC,		
SOx, TSP,		
PM ₁₀ ,		
PM _{2.5} , BC		

		CHLORINE PRODUCTION
SNAP		
040413		Number of plants (<5)
		Production capacity: 200 000 t chlorine
Emissions		Source of emissions
Hg	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
SOx	Т3	reported by plants 1990-1993, should be allocated under Energy sector

	PHOSPHATE FERTILIZERS
SNAP 040414	Number of plants (< 5)
Emissions	Source of emissions
	Only NH ₃ emissions from 1990, in 2022 submission should be studied the allocation oft he emission. No emission since 1991.

SNAP		OTHER
040416		
		Production of oxygen, nitrogen and hydrogen
		Number of plants <5
		Production capacity: oxygen (liquid) 45 000t/a, nitrogen (liquid) 40 000t/a and argon (liquid) 8000t/a
Emissions		Source of emissions
NMVOC,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
NOx, SOx		

SNAP		OTHER
040416		
		Al- and Fe-chemicals manufacturing
		Number of plants <5
		Production capacity: ~30 000t/a Al-salts
Emissions		Source of emissions
TSP, PM ₁₀ .	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
PM _{2.5} , BC		
SNAP		OTHER

SNAP 040416		OTHER Manufacturing of ion exchange and chromatographic resins and special polymers Number of plants <5 Production capacity ~1000 m3/a ion exhange resins
Emissions		Source of emissions
NMVOC	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

SNAP 040416		OTHER Pigments manufacturing Number of plants <5 Production capacity: ~50 000t/a Al-silicate and silicone dioxide pigments
Emissions		Source of emissions
TSP,	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
PM10,		
PM2.5, BC		

SNAP 040416		OTHER Manufacturing of explosives Number of plants <5 Production capacity: not availble
Emissions		Source of emissions
NMVOC,	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
NOx, SOx		

SNAP		OTHER
040416		Fertilizer manufacturing Number of plants <5 Production capacity: not available
Emissions		Source of emissions
TSP,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
PM10,		
PM2.5		

SNAP		OTHER
040416		
		Manufacturing of cobolt based special chemicals
		Number of plants <5
		Production capacity: not available
Emissions		Source of emissions
Cu, Ni,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
NMVOC, SOx		

	_	<u>, </u>
SNAP		OTHER
040416		Hydrogen peroxide plant
		Number of plants <5
		Production capacity: ~130 000 t/a hydrogen peroxide
Emissions		Source of emissions
NMVOC	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
SNAP 040416	•	OTHER
		Manufacturing of natrium silicate
		Number of plants <5
		Production capacity: ~45 000t/a silicate
Emissions		Source of emissions
TSP, PM ₁₀ ,	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
PM _{2.5} , BC		
SNAP 040416	;	OTHER
5.07.11 6 16 126		
		Manufacturing of synthetic fibre
		Number of plants – none in 2010 century
		Production capacity: not availble
SNAP 040416	•	OTHER
		Potassium sulphate manufacturing
		Number of plants <5
		Production capacity: ~200 000 t/a potassium sulphate
Emissions		Source of emissions
HCB, PCDD/F T3		reported by the plants according to the monitoring and reporting obligations in their environmental permits
SNAP 040416	:	OTHER
314AI 040410		O THEK
		Manufacturing of fine chemicals
		Number of plants <5
		Production capacity: not available
Emissions		Source of emissions
NMVOC	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
SNAP 040416	:	OTHER
3NAP 040410	'	OTHER
		Manufacturing of PCC (Precipitated calcium carbonate)
		Number of plants<5
		Production capacity: not availble
Emissions		Source of emissions
NOx, SOx	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
SNAP		ETHYLENE
040501		
		Number of plants <5
		Production capacity: ~400 000 t/a
Emissions		Source of emissions
NMVOC,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
TSP, PM _{10,}	13	reported by the plants according to the monitoring and reporting obligations in their environmental permits
PM _{2.5} , BC		
SNAP 040506		POLYETHYLENE LOW DENSITY
J-10300		I .

	т—	T
		Number of plants <5 Production capacity: not available
Emissions		Source of emissions
NMVOC	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
SNAP	Τ	POLYETHYLENE HIGH DENSITY
040507		TOTAL TILL.
		Number of plants <5
		Production capacity ~350 000 t/a
Emissions		Source of emissions
NMVOC	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
TSP,	T3	emissions 1996-1998 reported by the plants according to the monitoring and reporting obligations in their
PM10,		environmental permits
PM2.5		
SNAP		PVC
040508		
		Polyvinylchloridehas been manufactured in Finland in 1969-2006
		Number of plants
		Production capacity
Emissions		Source of emissions
NMVOC,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
TSP,		
PM10,		
PM2.5		
SNAP		POLYPROPYLENE
040509		
		Number of plants <5
		Production capacity: ~200 000 t/a
Emissions	-	Source of emissions
NMVOC	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
NOx	T3	emissions from 2002 reported by the plants according to the monitoring and reporting obligations in their
		environmental permits
SNAP	Т	POLYSTYRENE
040511		FOLISTINENE
		Number of plants <5
	<u> </u>	Production capacity ~50 000 t/a
Emissions	<u> </u>	Source of emissions
NMVOC	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
SNAP	T	STYRENE-BUTADIENE
040512		STINENE-BOTABLENE
		Number of plants <5
	<u> </u>	Production capacity ~300 000 t/a
Emissions	<u> </u>	Source of emissions
NMVOC	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
	T	STYRENE-BUTADIENE LATEX
SNAP		STITULE BOTABLERE EATEN
040513		Number of plants <5
	<u> </u>	Production capacity; 180 000 t synthetic rubberlatex
Emissions		Source of emissions

reported by the plants according to the monitoring and reporting obligations in their environmental permits

emissions from 1997 reported by the plants according to the monitoring and reporting obligations in their

NMVOC

SOx

T3

T3

environmental permits

SNAP	PESTICIDE PRODUCTION
040525	
	Earlier energy related emissions were erroneously reported under this category. No activities in Finland.
Emissions	Source of emissions

SNAP		OTHER (PHYTOSANITARY,)
040527		
		Entzyme production
		Number of plants <5
		Production capacity: not available
Emissions		Source of emissions
TSP, PM ₁₀ ,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
PM _{2.5}		

SNAP 040527		OTHER (PHYTOSANITARY,) Manufacturing of techno-chemical products
		Number of plants 12
		Production capacity: not available
Emissions		Source of emissions
SO _x , TSP,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
PM ₁₀ , PM _{2.5} ,		
NMVOC, BC,		
PCB, diox,		
PAH4, Cr,		
Ni, NH3		

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.25

Table 4.25 Contribution of Chemical Industry: other (NFR 2B10a) to total emissions in 2019.

Pollutant	Emissions from other chemical industry	Total emissions	Unit	Share of total emissions %	% reported by the plants
NO _x (as	0.153	119.817	Gg	0.1	50.1
NMVOC	2.219	84.522	Gg	2.6	100
SO _x (as	1.246	28.937	Gg	4.3	100
NH ₃	0.309	31.593	Gg	1	100
PM _{2.5}	0.223	16.622	Gg	1.3	0
PM ₁₀	0.326	30.034	Gg	1.1	0
TSP	0.377	44.952	Gg	0.8	100
BC	0.004	3.848	Gg	0.1	0
Pb	0.001	13.22	Mg	<0.1	0
Hg	0.035	0.587	Mg	6	1.1
Cu	<0.001	40.171	Mg	<0.1	100
Ni	0.177	11.541	Mg	1.5	100
Zn	0.25	130.305	Mg	0.2	0
НСВ	15.45	22.637	kg	68.3	100

Emission trends

NH₃ emissions are generated in production of fertilizers (Figure 4.14)

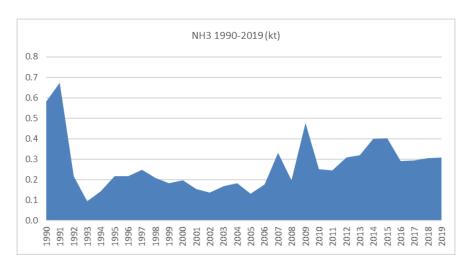


Figure 4.14 Ammonia emissions from the production of fertilizers

Particle emissions originate in production of sulphuric acid, fertilizers, phosphates, and PVC as well as from of inorganic chemicals, ethylene, polyethylene, other organic chemicals and chemicals products.

BC emissions originate from Al- and Fe-chemicals and pigments manufacturing, manufacturing of natrium silicate and techno-chemical products. (Figure 4.15)

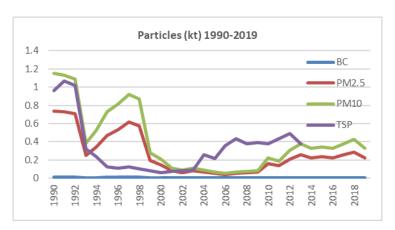


Figure 4.15 Particle emissions from production of H₂SO₄, fertilizers, phosphates and PVC.

Chromium emissions are related to lignin manufacturing which occurred only in 1993-2008.

HCB emissions originate in the manufacturing of potassium sulphate, which is a major source of HCB emissions (Figure 4.13).

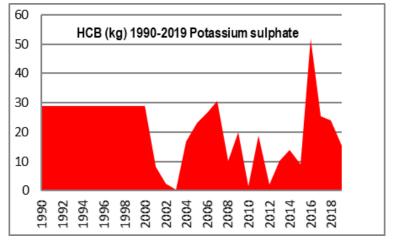


Figure 4.13 HCB emissions from potassium sulphate manufacturing

PCDD/F emissions originated from manufacturing of potassium sulphate but due the improvements in its refining methods, the emissions decreased emissions since 2017 and stopped in 2018.

Methodological issues

The emissions falling under this category are reported by the plants according to the monitoring and reporting obligations in their environmental permits (T3). When no plant specific data is available emissions have been calculated as presented below.

Particles (Key category for PM2.5, T3)

Particle emissions from this sector in the inventory are based on TSP emission data reported by the plants (YLVA). PM₁₀ and PM_{2.5} emissions are calculated from TSP emissions using size fraction factors as follows:

- Production of sulphuric acid: 100 % for both $PM_{2.5}$ and PM_{10} (TNO, 2002).
- Production of fertilizers 98% for PM₁₀ and 66 %, PM_{2.5} (IIASA, 2001/AEAT, 2000)
- Production of phosphates: 80% for PM₁₀ and 60 %, PM_{2.5} (Guidebook 2019)
- Production of PVC: 38% for PM₁₀ and 1.9 %, PM_{2.5} (Guidebook 2019)
- Production of inorganic chemicals, ethylene, polyethylene, other organic chemicals and chemicals products: 80 % for PM₁₀ and 50 % for PM_{2.5} (national expert estimate, Karvosenoja, 2002).

Black carbon

Black carbon emissions have been calculated using the fraction factor of 1.8 % of PM_{2.5} (Guidebook 2019, EEA 2019) for the following sources: Al- and Fe-chemicals and pigments manufacturing, manufacturing of natrium silicate and techno-chemical products.

NOx

Nitrogen dioxide emissions from this sector in the inventory are based on emission data reported by the plants (YLVA) from the following sectors:

- Production of sulfuric acid
- Manufacturing of ammunition
- Production of pigments used in paper making.

SO_x (Key category for SO_x, T3)

Sulphur dioxide emissions (reported mostly as TRS, total reduced sulphur, and converted into SO₂) from this sector in the inventory are based on emission data reported by the plants (YLVA) from the following sectors:

- Production of sulphuric acid
- Production of fertilizers
- Prodcution of cobolt based chemicals
- Production of pigments used in paper making
- Production of techno-chemical products

NH_3

Ammonia emissions are generated in production of fertilizers and are based on emission data reported by the plants.

NMVOC (Key category for NMVOC, T3)

Chemical industry processes emitting NMVOCs include

- Production of oxygen, nitrogen and hydrogen
- Manufacturing of ion exchange and chromatographic resins and special polymers
- Manufacturing of explosives
- Manufacturing of cobolt based special chemicals
- Hydrogen peroxide plant
- Manufacturing of fine chemicals
- Production of polyethylene low density, high density polypropylene, polystyrene
- Production of styrene butadiene and styrene-butadiene latex

- Pesticide production
- Manufacturing of techno-chemical products
- -NMVOC emissions from this sector in the inventory are either based on data reported by the plants according to their environmental permits, or if emissions would not be reported in the inventory year, the emissions from the previous year have been included in the inventory, instead.

Heavy metals (Key category for Hg, T3)

- Nickel and copper emissions are generated in manufacturing of cobolt based special chemicals and reported by the operators according to their environmental permits.
- Chromium emissions are related to lignin manufacturing which occurred only in 1993-2008.
- Mercury is emitted from chlorine production using the mercury process. There is also chlorine-alkali production, which uses the membrane method, however, no mercury emissions are generated from this process.

POPs

Emissions of HCB, PCDD/Fs and PAHs from the manufacturing of potassium sulphate, as well as PCDD/F emissions from the manufacturing of organic fine chemicals are reported by the plants and available in YLVA for the use in the inventory.

HCB (Key category for HCB, T3)

- Manufacturing of potassium sulphate is a key category for HCB emissions (L1, T1). The NFR 2B10a is thus a key category for HCB emissions (L1, T1). The emissions are reported by the plant based on site-specific measurements.
- HCB emissions vary strongly due to the fluctuating quality and volume of auxiliary chemicals used in the process. The raw material quality and emissions in the potassium production process, from which the emissions originate, are monitored closely. Annual HCB emissions are reported by plant operators to the environmental authorities. However, for the years 1990-2000, i.e. before the emissions were discovered in connection with other research, no data on the emission levels is available. The plant has estimated the emissions during these years to be at the level of 29 kg annully, and thus these figures are used in the inventory as there are no other methods to estimate these historical emissions. Work to find and install a suitable flue gas abatement technology is underway.

PCDD/F emissions have been reported by one plant the first time in 2000. Emissions between 1990-1999 are expert estimates based on the reported emission figure in 2000. In 2001 a new active carbon filter was taken in use at the plant resulting in 97% reduction of dioxine emissions. Since 2018 the plant has not reported any PCDD/F emissions due the improvements in its refining methods, which decreased emissions since 2017 and stopped in 2018.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 5 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2018-2019

- The emissions were reallocated between the Energy sector and the IPPU sector as far as possible and in a consistent manner over the time series. The reallocation did not introduce changes into total emission levels.
- Between the 2018 and 2019 submissions SO2 emissions for 2B10a were recalculated since emissions from one plant for 2001 were incorrectly reported in the YLVA system (YLVA is the national data system for data reported by operators to environmental authorities). The error was discovered when preparing the 2019

submission. The SO2 emissions reported for 2001 belong under category 1A2b and the emissions were reallocated there. Unfortunately, the explanation for this was missing from the IIR 2019.

Source-specific planned improvements

None

Storage, handling and transport of chemical products (NFR 2B10b)

Changes in ch	apter
Ferbuary 2021	JMP KS

Source category description

SNAP 040415 and 040522 No key category for any pollutants		STORAGE AND HANDLING OF INORGANIC CHEMICAL PRODUCTS, STORAGE AND HANDLING OF ORGANIC CHEMICAL PRODUCTS Chemical and fuel storages, storage and handling of phosphates.
Emissions	Tier	Emission source
TSP, PM ₁₀ , PM _{2.5}	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits, calculated
NMVOC	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

Emission trends

Particle emissions from Storage and handling of phosphates are included in this category (Figure 4.17).

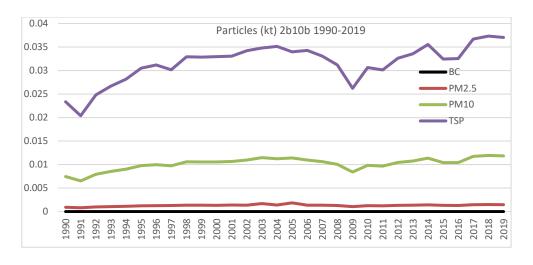


Figure 17. Particles from storage and handling of phosphates.

The emissions include both data reported by the plants and data calculated, and the shares of these fluctuate annually. The shares in the 2019 submission are presented in Table. 4.26.

Table 4.26 Contribution of Storage, handling and transport of chemical products (NFR 2B10b) to total emissions in 2019.

Pollutant	Emissions NFR 2B10b	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	0.137	84.522	Gg	0.2	100
PM2.5	0.001	16.622	Gg	<0.1	0
PM10	0.012	30.034	Gg	<0.1	0
TSP	0.037	44.952	Gg	<0.1	0

Methodological issues

Emissions are mainly reported by the plants according to the monitoring requirements in the environmental permits. When no plant specific data is available emissions have been calculated. Production of phosphates is presented in Table 4.27 and the emissions in Table 4.28.

Particles

Particulate emissions from storage and handling of phosphates are calculated with emission factors: $PM_{2.5}$ 0.0000016 t/t, PM_{10} 0.0000128 t/t and TSP 0.00004 t/t (TNO, 2002). There are no methods in the Guidebook. Activity data presented in Table 4.27 is provided by the fertilizer producers (available in YLVA datasystem) and in the Customs statistics (ULJAS).

Table 4.27 Activity data for storage and handling of phosphates (Customs Statistics ULJAS).

Year	Production of phosphates (t)	Year	Production of phosphates (t)	Year	Production of phosphates (t)
1990	584 000	2000	824 000	2010	765 000
1991	510 000	2001	823 000	2011	752 000
1992	621 000	2002	856 000	2012	814 400
1993	668 000	2003	853 000	2013	838 300
1994	704 000	2004	879 000	2014	888 940
1995	762 000	2005	823 000	2015	810 309
1996	780 000	2006	857 000	2016	813 889
1997	748 000	2007	824 000	2017	917 418
1998	820 000	2008	777 000	2018	933 197
1999	820 000	2009	655 000	2019	925 934

Table 4.28 Calculated particle emissions from storage, handling and transport of chemicals products.

Year	PM _{2,5} (t)	PM ₁₀ (t)	TSP (t)	Year	PM _{2,5} (t)	PM ₁₀ (t)	TSP (t)
1990	0.93	7.47	23.35	2010	1.22	9.80	30.61
1991	0.82	6.52	20.39	2011	1.20	9.63	30.10
1992	0.99	7.94	24.82	2012	1.30	10.42	32.58
1993	1.07	8.54	26.70	2013	1.34	10.73	33.53
1994	1.13	9.01	28.17	2014	1.42	11.38	35.56
1995	1.22	9.76	30.50	2015	1.30	10.37	32.41
1996	1.25	9.98	31.19	2016	1.30	10.42	32.56
1997	1.20	9.58	29.93	2017	1.47	11.74	36.70
1998	1.31	10.50	32.81	2018	1.49	11.94	37.33
1999	1.31	10.49	32.78	2019	1.48	11.85	37.04
2000	1.32	10.55	32.97				
2001	1.32	10.53	32.91				
2002	1.37	10.95	34.22				
2003	1.37	10.92	34.13				
2004	1.41	11.25	35.15				
2005	1.32	10.53	32.90				
2006	1.37	10.97	34.28				
2007	1.32	10.55	32.97				
2008	1.24	9.94	31.07				
2009	1.05	8.38	26.18			•	

NMVOC

Emissions are reported by the plants.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2021

• Facility reported TSP emissions were corrected for one plant for 2010. As result, emissions of PM_{2.5} and PM₁₀ were also recalculated for this plant.

Source-specific planned improvements

None.

4.4 Metal Production (NFR 2C)

Changes in chapter	
February 2021 JMP KS	

Source category description

Metal Production activities in Finland include iron and steel production, copper products, refined steel, zinc, nickel and alloys.

NFR	Processes		Description	Emissions reported	
2C1			Iron and steel plants (< 5 plants), both emissions reported by the plant and calculated at the inventory agency	NMVOC, SO _X , NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, CO, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn, PCDD/F, PAH-4, HCB, PCB	
2C2	Ferroalloys production		Ferrochromium production plants (< 5 plants) are part of integrated stainless steel plants, emission reported by the plants	NMVOC, SOx, TSP, PM ₁₀ , PM _{2.5} , BC, Pb, Cd, Hg, Cr, Cu, Ni, Zn, As, PAH-4,	
2C3	Aluminium production	=	There is no primary aluminium production in Finland. Secondary aluminium production and aluminium casting (<5 plants)	NMVOC, TSP, PM ₁₀ , PM _{2.5} , BC, Pb, Cd, As, ,Zn, PCDD/F , HCB, PCB	
2C4	Magnesiur production		No magnesium production ocuurs	Not Occuring	
2C5	Lead produ	uction	No lead production occurs	Not Occuring	
2C6	Zinc produ	ction	< 5 zinc production plants, emissions both reported by the plants and calculated at the inventory agency	NMVOC, TSP, PM ₁₀ , PM _{2.5} Pb, Cd, Hg, As, Cu, Ni, Zn, PCDD/F	
2C7a	Copper production		Copper production plants (< 5 plants) and production of upgraded copper products. Emissions both calculated or reported by the plants	NMVOC, SO _x , TSP, PM ₁₀ , PM _{2.5} , BC, CO, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, HCB, PCB	
2C7b	Nickel prod	duction	< 5 plants	NMVOC, SOx, NH ₃ , Ni	
	Other metal production 040307 Galvanizing 040309 Other				
	040309	Other	Aluminium foundry		
	040309	Other	Handling of FeCr slag	NMVOC, SO _x , NH ₃ , TSP, PM ₁₀ ,	
2C7c	040309	Other	Surface treatment of metals	PM _{2.5} , Pb, Cd, Hg, As, Cr, Cu, Ni, Se,	
2070	040309	Other	Secondary aluminium production	Zn, PCDD/F, HCB, PCB	
	040309	Other	Manufacturing of furniture (zinc electroplating)	,,,,	
	040309	Other	Manufacturing of metallic construction mountings		
	040309	Other	Cable manufacturing		
	040309	Other	Manufacturing of nails		
	040309	Other	Lock manufacturing		
2C7d	Storage, handling and transport of metal products		Storage and handling of iron ore.	TSP, PM ₁₀ , PM _{2.5}	

Emission trends

Air pollutant emissions from metal production depend on the annual production volumes, which depend e.g. on markets, as well as on chemicals' use volumes over the years. There have also been changes in the production and emission abatement technologies over time. Detailed trend explanations are provided separately for each of the NFR sub-categories.

Methodological issues

Emissions of those plants that report their emissions to the supervising authorities⁵ according to the monitoring requirements in the environmental permits are reported as "IE" and allocated under NFR 1A2a or NFR 1A2b. This is because the reporting obligations determined in the monitoring programmes are for the total emissions of the plants and not separated between fuel combustion and other processes. In most cases it has not been possible to split emissions in the NFR categories. In cases where it has been possible to separate fuel combustion emissions from process emissions, these are reported separately under the NFR 2C categories. For those plants that report only total emissions, the split is based on the default emissions calculated on basis of fuel consumption which is reduced from the emissions reported by the plants, and reported under the NFR 1A2a for iron and steel or under 1A2b for non-ferrous metals processes. In case it has not been possible to make a split between energy and process related emissions, all emissions are reported under NFR 1A2a or NFR 1A2b.

For those plants that do not report their emissions to supervising authorities, emissions have been calculated based on production data available in VAHTI or on statistical information from industrial associations, and emission factors.

The share of especially heavy metal, POP and NMVOC emissions reported to the environmental authorities available in VAHTI has increased during the recent years due to the implementation of the E-PRTR regulation. Part of the emissions in the inventory, which were previously calculated with international emission factors, are now reported by individual companies based on measurements or plant specific other information.

When the plants do not have plant specific information for the basis of estimation of emissions, they use national emission factors, which are the same that are also used in the inventories and are available for the use of the plants at a website maintained by the Finnish Environment Institute for this purpose⁶.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 5 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2019 submission

- -Check of national emission factors and calculation of new emission factors based on site specific information.
- Presentation of emission trends

Source specific planned improvements

None

⁵ The emission data is available from the VAHTI database after it has been checked and approved by the authorities.

Changes in chapter February 2021 KS, JMP

Source category description

SNAP 040202,	IRON AND STEEL PRODUCTION
040203, 040205,	
040206, 040207,	The first blast furnace in Finland was built in 1616 in Mustio. In 1916 the first smelter plant was
040208, 040209,	established.
040210	
	Currently steel is produced at four plants in Finland with an annual total capacity of about 5 million tonnes.
	Both ore and recycled steel (about 2 million tonnes annually) are used.
Key category for	
Sox (L1, T1)	Sintering unit – 1994 - December 2011, expanded in 1971
TSP, PM ₁₀ , PM _{2.5}	Sintering unit - 2013-
(L1, T1)	Blast furnace – 1961-2012
Pb, Hg, Cr, Ni, Zn	Blast furnace - 1964, renovated in 1995
(L1, T1)	Blast furnace – 1975, renovated in 1996 and 2011
PCDD/F (L1, T1)	
PAH-4 (T1)	. The plants included in this sector are in 2018 inventory:
PCB (L1, T1)	 One iron and steel plant including coke oven, blast furnace, lime production plant and
	steel converter
Method for all T3	One iron and steel plant including blast furnace and steel converter (closed down in
	2012)
	One integrated ferrochromium and stainless steel plant
	One steel plant with electronic arc furnace, using scrap iron only
	and steel plant man decade in an armost as ap non-only
	The Finnish plants use both iron ore and scrap metal and produce iron ore, iron pellets, steel, hot and cold
	rolled coils/sheets, steel bars, strips, plates, billets, wire rod products.
	Emissions from iron and steel plants are both reported by the plants according to their monitoring and
	reporting requirements in the environmental permits, and also calculated at the inventory agency. Tier 3 /
	Emissions related to fuel combustion are mainly reported under NFR 1A2a.
Units	Emissions Emission data reported by the plants Calculated for

Units	Emissions	Emission data reported by the plants	Calculated for
	NMVOC	75% (< 5 plants)	25% (< 5 plants)
	PAH-4	50% (< 5 plants)	50% (< 5 plants)
	PCDD/F	75% (< 5 plants)	25% (< 5 plants)
Steel production, < 5 plants	PCB	25% (< 5 plants)	75% (< 5 plants)
(the other of the remaining blast furnaces was closed	As, Cd, Pb, Zn	100% (< 5 plants)	-
down in 2012)	Cr, Cu, Hg, Ni	100% (< 5 plants)	-
·	СО	100% (< 5 plants)	-
	NOx, SOx	100% (< 5 plants)	-
	TSP	100% (< 5 plants)	PM10, PM2.5, BC
Pig iron tapping	PAH-4	-	100% (< 5 plants)
	NMVOC	100% (< 5 plants)	-
	PAH-4	100% (< 5 plants)	-
Sinter processes, < 5 plants	PCDD/F	100% (< 5 plants)	-
(last unit was closed down in	РСВ	-	100% (< 5 plants)
December 2011 and a new	НСВ	-	100% (< 5 plants)
one started operation in	TSP	100% (< 5 plants)	PM10, PM2.5
2013)	Cd, Cr	100% (< 5 plants)	-
	Pb	100% (< 5 plants)	-
	SOx, NOx	100% (< 5 plants)	-
Polling mills < E plants	As, Cr, Cu, Pb, Ni	100% (< 5 plants)	-
Rolling mills, < 5 plants	Hg, Cd	100% (< 5 plants)	-

	Zn	100% (< 5 plants)	-
	TSP	100% (< 5 plants)	PM10, PM2.5, PM
	NMVOC	100% (< 5 plants)	-
	SOx	100% (< 5 plants)	-
	NOx	100% (< 5 plants)	-
	NH3	100% (< 5 plants)	-
	As	100% (5 plants)	-
	Hg	<5 plants	-
	СО	<5 plants	-
	TSP	10-20 plants	PM10, PM2.5, PM
Other, 26 plants	Cd	5-10 plants	-
	Cr, Cu, Zn	10-20 plants	-
	Pb	10-20 plants	-
	Ni	10-20 plants	-
	NMVOC	10-20 plants	-
	SOx, NOx	<5 plants	-

Steel producers in Finland

Producers of steel and non-ferrous metals in Finland in 2014 are presented in Figures 4.18a and 4.18b.

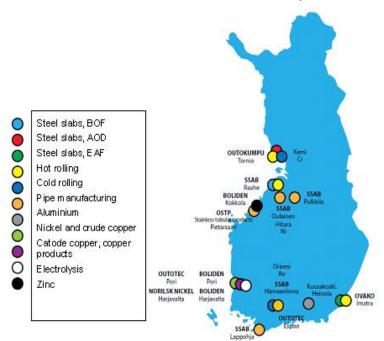


Figure 4.18a. Technologies in steel and non-ferrous metals in Finland in 2014

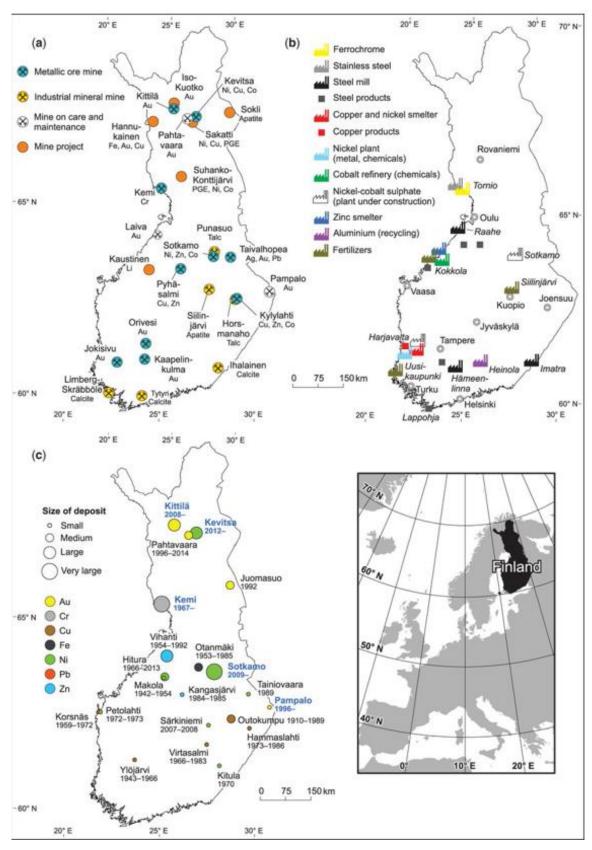


Figure 4.18b. Producers of steel and non-ferrous metals in Finland in 2020 https://sp.lyellcollection.org/content/early/2020/02/04/SP499-2019-83

Production of steel⁷

Processes used in the production of steel from iron ore and scrap metal in Finland are described below (Figure 4.19).

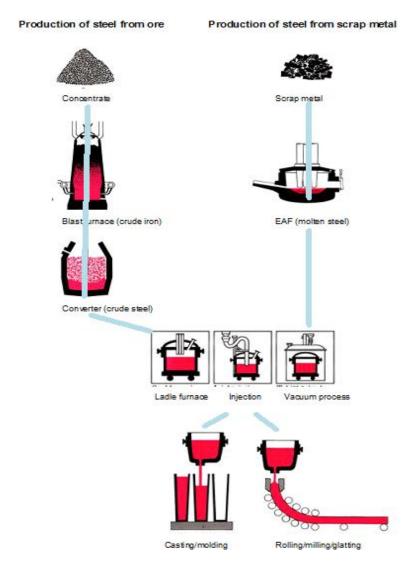


Figure 4.19 Production of steel from iron ore and scrap metal in Finland according to Teräskirja (Book of Steel in Hiilitieto, 2017)

Production from ore

Steel production processes in Finland include oxygen injection, EAF and AOD methods. In 2015 two blast furnaces were in operation. The blast furnaces are small but belong to the most efficient ones in Europe regarding production volumes and fuel use as well as the use of coal per steel tonne produced.

Process units for iron and ferrochrome production use coal and coke and utilise carbon monoxide and hydrogen containing process gases as energy sources. Processes include coking plant, blast furnace, sinter plant, sulphur removal, ladle furnace, BOF converters, LD converter, casting, hot and cold rolling.

⁷ http://www.outokumpu.com/en/products-properties/more-stainless/producing-stainless-steel/Pages/default.aspx
http://www.ovako.com/en/Products/Standard-steel-grades/
http://www.ovako.com/en/Products/Standard-steel-grades/
http://www.ovako.com/en/Products/Standard-steel-grades/
http://www.ovako.com/en/Products/Standard-steel-grades/
http://www.ovako.com/en/Products/Standard-steel-grades/
http://www.ovako.com/en/Products/Standard-steel-grades/
https://www.ovako.com/website/Content/GuestInformation/SiteDetail/Steel/8766/FNsteel - Koverhar
https://www.ovako.com/website/Content/GuestInformation/SiteDetail/Steel/8766/FNsteel - Koverhar
https://www.ovako.com/website/

In the production of carbon steel iron ore is reduced in blast furnaces using coke and oil into crude iron. Coke and oil are added to reduce the oxygen present in the iron ore. Crude iron contains 4.5% coal and the iron turns into steel in the converter (steel is iron where the coal content is below 2%). Combustion gases from coking are used as energy sources in the processes of the steel mill and contribute to 60% of the energy demand.

In the production of ferrochrome which is rawmaterial for stainless steel, coal is used to reduce chrome concentrate and combustion gases from this are used as fuel.

Processing of steel from scrap and alloys

Electric arc furnace (EAF) is used for steel production from scrap metal in Finland. Molten ferro chromium smelting is used in addition to EAF. The steps in processing metal scrap include

- 1) Melting of raw materials in an electric arc furnace (EAF)
 - During the melting process, the arc reaches temperatures of up to 3,500 °C, and the molten steel can reach up to 1,800 °C. The additional injection of chemical energy, in the form of carbon, ferrosilicon, oxygen, or fuel gas mixtures, speeds up the melting process.
- 2) Removal of carbon, sulfur, and possibly nitrogen, in a steel converter

After melting, the steel is further processed in an AOD (Argon Oxygen Decarburization) converter or through a VOD (Vacuum Oxygen Decarburization).

In the AOD the carbon content is reduced to a target amount and to supply additional alloying elements. When liquid ferrochrome is used, an iron-rich scrap mix with low alloy content is melted in the arc furnace. Nickel and molybdenum, together with the liquid ferrochrome, are then added to the AOD converter.

The VOD (Vacuum Oxygen Decarburization) is used to produce very low carbon or nitrogen content for high chromium ferritic stainless steels.

- 3) Tuning of the steel composition and temperature
 - Secondary metallurgical treatment is done in a ladle station, ladle furnace, or as a vacuum treatment of the liquid steel to adjust and to homogenize both the temperature and chemistry of the molten material.
- 4) Casting of slabs or ingots

The liquid steel ladle is transported to casting.

Hot rolling

In hot rolling the cast microstructure of semi-finished casting products is broken down maintaining but maintaining a structure to prevent the steel from hardening. The finished product's surface is covered with an iron- and chromium-rich oxide that forms at high temperatures. It is usually removed in the annealing and pickling line, which restores the smooth metallic surface.

Cold rolling, annealing, and pickling

- a) Small-diameter working rolls work out the strip profile and flatness. Restoring the material properties after cold rolling is carried out in a heat treatment and all oxide scale is removed in acid pickling baths, and then finishing off with high pressure water rinsing. Alternatively, a bright annealing line (BA-line) is used to restore the material properties hydrogen or a mixture of hydrogen and nitrogen. As no oxygen is available inside the furnace, no additional oxide scale is formed and whatever oxide remains on the strip is reduced to metal.
- b) Skin pass rolling (temper rolling) is a light cold-rolling treatment with low reduction (0.5–1%) to improve the strip shape, finish, and mechanical properties.

Final processing

To tailor coils and plates to customer requirements the following processes are used:

- Roller or stretch leveler
- Edge trimming to the desired width
- Slitting into narrow coils
- Cutting into desired length sheets/plates

- Shearing/cutting into an order-sized shapes.
- Coating and preparing edges for special welding requirements

Emission trends

In surface preparation such as grinding, brushing, pattern rolling, or embossing the emissions are impacted by annual production rates (Figure 4.20), which depend on the markets. Technological changes in production and abatement techniques have occurred over the time.

- Dip in HCB emissions in 2011 is due to closing of one sintering unit (high HCB emission level), while a new sintering unit was started in 2021 (low HCB emission level). Please refer to sinter production volumes.
- PAH emissions originate from sintering, however an explanation has not yet been found for the lower emission level since 2006?
- PCB emissions originate from sintering and production of crude steel, the fluctuation in 2008-2011 in the emissions is related to fluctuation of the production volumes of iron f the same years.

Table 4.29 Contribution of Iron and Steel production (NFR 2C1) to total emissions in 2019.

Pollutant	Emissions iron and steel industry	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	0.21	84.522	Gg	0.2	100
SOx (as SO ₂)	0.734	28.937	Gg	2.5	100
NH ₃	0.038	31.593	Gg	0.1	100
PM2.5	0.219	16.622	Gg	1.3	0
PM10	0.235	30.034	Gg	0.8	0
TSP	0.287	44.952	Gg	0.6	100
BC	<0.001	3.848	Gg	<0.1	0
CO	0.19	344.933	Gg	<0.1	100
Pb	0.395	13.22	Mg	3	100
Cd	0.004	0.794	Mg	0.5	100
Hg	0.131	0.587	Mg	22.4	100
As	0.042	2.065	Mg	2	100
Cr	2.297	14.286	Mg	16.1	100
Cu	0.409	40.171	Mg	1	100
Ni	0.795	11.541	Mg	6.9	100
Zn	1.504	130.305	Mg	1.2	100
PCDD/F	1.076	12.132	g I-Teq	8.9	100
PAHs	0.009	22.309	Mg	<0.1	0
HCB	0.016	22.637	kg	<0.1	0
PCBs	11.814	22.78	kg	51.9	30.5

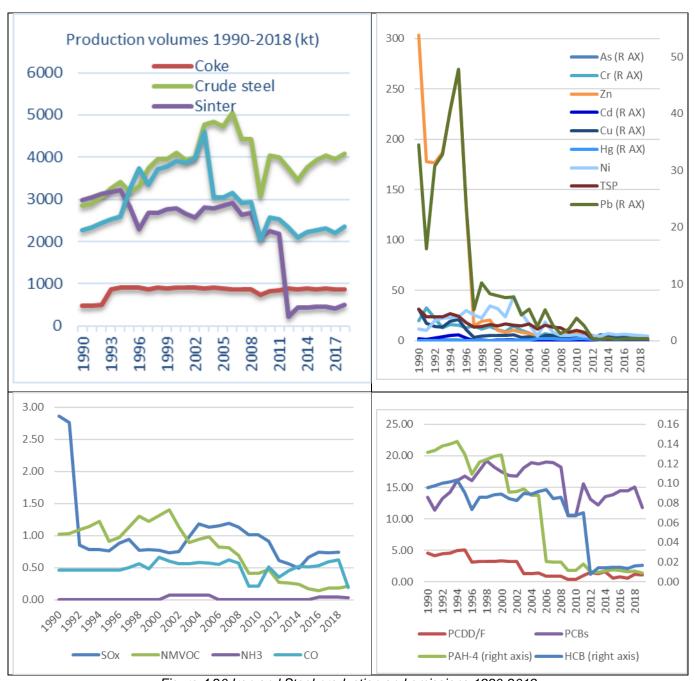


Figure 4.20 Iron and Steel production and emissions 1990-2019

This sector contributed more than 10% of the total Cr and Hg emissions and approximately 5% of total As, Ni and PCB emissions. The shares of emissions of total emissions and the shares reported by the plants are presented in Table 4.29.

Methodological issues

Activity data

Activity data for production of coke, steel and iron, is presented in Table 4.30.

Table 4.30 Production of coke, steel and iron as reported by plants to the YLVA-database

Year	Production of coke (1000t)	Production of crude	Production of sinter (t)	Production of iron (t)
		steel (1000t)		
1990	487	2 861	2 992 000	2 280 000
1991	471	2 890	3 049 000	2 330 000
1992	498	3 077	3 133 000	2 450 000
1993	874	3 256	3 178 000	2 530 000
1994	922	3 420	3 224 000	2 600 000
1995	920	3 176	2 832 000	3 242 000
1996	910	3 301	2 292 000	3 730 000
1997	879	3 734	2 673 000	3 350 000
1998	912	3 952	2 689 000	3 716 000
1999	900	3 956	2 770 000	3 783 000
2000	910	4 096	2 780 000	3 903 000
2001	909	3 938	2 650 000	3 857 000
2002	912	4 003	2 574 000	3 975 000
2003	895	4 766	2 815 000	4 600 000
2004	904	4 830	2 782 000	3 036 566
2005	894	4 738	2 857 000	3 056 165
2006	870	5 054	2 922 119	3 157 894
2007	865	4 431	2 644 780	2 915 130
2008	860	4 417	2 680 894	2 942 946
2009	740	3 066	2 104 435	2 042 112
2010	828	4 040	2 256 069	2 564 451
2011	852	3 989	2 184 169	2 522 316
2012	880	3 728	229 000	2 340 089
2013	877	3 465	434 000	2 107 032
2014	888	3 759	441 000	2 219 096
2015	876	3 939	457 000	2 270 261
2016	882	4 048	469 000	2 308 774
2017	864	3 953	416 000	2 196 276
2018	861	4 074	493 000	2 356 386
2019	836	3 444	515 000	1 813 106

Emissions are either reported by the plants or calculated using activity data.

Sulphur dioxide, nitrogen dioxide and heavy metals (Key category for SOx, Pb, Hg, Cr, Ni. Zn, all T3) Sulphur dioxide, nitrogen dioxide and heavy metal emissions from the iron and steel industry are based on data reported by the plants.

Particle emissions (Key category for TSP, PM₁₀ and PM_{2.5}, all T3)

Particle emissions are generated in the foundries and sinter plants. TSP emissions are reported by the plants to the supervising authorities and are available in YLVA to be used in the inventory. PM_{10} and $PM_{2.5}$ emissions have been calculated with fraction factors as follows:

- Foundries: 80% for PM₁₀ and 50 % for PM_{2.5} (Guidebook 2019)
- Sinter plants: 50% for PM₁₀ and 40% for PM_{2.5} (Guidebook 2019, (EEA, 2019))
- Steelworks (BOF): 91% for PM₁₀ and 80% for PM_{2.5} (Guidebook 2019 (EEA, 2019))
- Steelworks (EF) and rolling of steel: 80% for PM₁₀ and 70% for PM_{2.5} (Guidebook2019)

Black carbon

BC emissions are calculated using following emission factors:

- Basic oxygen furnace, electric furnace steel plant, rolling mills and foundries: 0.36 % of PM2.5 (Guidebook 2019 (EEA, 2019))
- Sinter and pelletizing plant: 0.17 % of PM2.5 (Guidebook 2019 (EEA, 2019))

NMVOC

Emission data from steel plants are reported by the plants to the supervising authorities. For those plants, which do not report their NMVOC emissions, the emissions are calculated with activity data and emission factors as follows:

- Basic oxygen furnace steel plant, emission factor 0.08 kg/t (Guidebook 2002). Note: Guidebook 2002 is used as it provides a T2 EF while the later Guidebooks including 2019 provide only a T1 EF which we consider to overestimate emissions.
- Electric arc furnace steel plant, emission factor 0.46 kg/t (Guidebook 2019, (EEA,2019)

PAH (Table 4.31) (Key category for PAH-4, method T3/T2)

Most of the steel mills report their PAH emissions to the environmental authorities. For those plants which do not report their emissions, PAH-4 emissions are calculated with emission factors as follows:

Production of steel, EFs:

- PAH-4 0.07 mg/t (UBA, 1998) (emissions occurred in 1990-2013)

Production of iron, EFs:

- PAH-4 4.3 mg/t PAH-4 (EPA, 1988)

Note that the Guidebook EF of 2.5 g/t likely is in an incorrect unit. Therefore the EF has not been used until the Guidebook value has been checked. This is related to the TERT recommendation from 2018.8

PAH emissions originate from the following processes:

- (1) Sintering, which occurred in 1990-2011, after that the unit was closed down A new unit started operation in 2013.
- (2) Iron and steel production, which have been operating all the years.

The emissions from sintering in 1990-2000 have been calculated using production data and the country specific EF based on measurements 0.04 g/t, which is considered to better reflect the techniques used in the 1990's, while the Guidebook 2019 EFs would correspond better to the more recent years. However, country-specific EFs are used for all years.

For the years 2001-2011 the emissions from sintering are reported by the plants and here the years 2001-2005 are based on measurements carried out in 1999, while the years 2006-2011 are based on measurements carried out in 2006. The sintering plant was shut down in 2011.

The emissions from the new unit that started the operation in 2013 are reported by the plant and are low compared to the emissions from the earlier unit that was closed down in 2011. The reason for the strong decreases are thus due to actual changes in the activities.

From iron production the emissions are calculated using the country specific EF of 4.3 mg/t based on B(a)P-, benzo(b)-, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene measurements at the plant, and production data.

From steel production, emissions of 2 of the 3 plants are based on information from the plants for the whole time series, For the third plant, the emission are calculated using the US EPA EF of 0.07 mg/t. These emissions have occured in 1990-2003.

The split of PAH-4 emissions into the 4 PAH species has been carried out according to the results from a recent survey to the plants.

⁸ The TERT identified a number of observations on the trend and its use of EFs that were not country specific or consistent with the guidebook for 2C1 Iron and Steel production and PAH emission for 2006-2016. In response to a question raised during the review Finland provided additional information on the estimation method and the trends. The TERT recommends that Finland include this information in its IIR and considers using the 2016 EMEP/EEA Guidebook emission factors if no better country specific emission factors are available.

PCB and HCB (Table 4.31) (Key category for PCB, method T3/T2)

Most of the steel mills report their POP emissions to the environmental authorities. For those plants which do not report their emissions, PCB emissions are calculated as follows:

Production of steel with the EF of 2.5 mg/Mg Guidebook 2019

Emission factors used for production of sinter

- HCB 32 ug/t Guidebook 2019, (EEA, 2019)
- PCB 0.09 mg/t Guidebook 2019, (EEA, 2019)

PCDD/F (Key category for PCB, method T2/T3)

The emissions from sintering in 1990-2001 have been calculated using production data and the country specific EF based on expert estimate 0.36 ug *I-TEQ*/t (unfortunately missing from IIR 2019), which is considered to better reflect the techniques used in the 1990's, while the Guidebook 2019 EFs correspond better to the more recent years. However, country-specific EFs are used for all years. The emissions were reported by plants in 2002-2011. These sintering plants were shut down in 2011. Since 2013 PCDD/F emissions from sintering are reported by one plant which started operation in 2013.

PCDD/F emissions from steel production are reported by plants.

Table 4.31 POP emissions from iron and steel production.

Year	PCB (kg)	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Indeno(1,2,3-cd)	PCDD/F
		(kg)	(kg)	(kg)	pyrene (kg)	(g I-TEQ)
1990	13.464	32.9	33.0	33.0	32.7	4.6
1991	11.327	33.4	33.5	33.4	33.2	4.1
1992	13.224	34.4	34.6	34.5	34.2	4.4
1993	14.250	35.0	35.2	35.1	34.8	4.6
1994	16.030	35.6	35.8	35.7	35.4	4.9
1995	16.821	32.5	32.6	32.6	32.2	5.1
1996	16.033	27.3	27.5	27.4	27.2	3.1
1997	17.680	30.4	30.6	30.5	30.4	3.2
1998	19.188	31.0	31.2	31.1	31.0	3.3
1999	18.174	31.9	32.0	32.0	31.9	3.3
2000	17.531	32.1	32.3	32.2	32.1	3.3
2001	16.849	22.7	22.8	22.8	22.7	3.2
2002	16.817	22.8	23.0	22.9	22.8	3.2
2003	18.084	23.5	23.6	23.6	23.5	1.3
2004	18.931	21.8	22.0	21.9	21.8	1.3
2005	18.752	21.9	22.0	21.9	21.8	1.3
2006	19.001	5.1	5.3	5.2	5.0	0.9
2007	18.932	4.9	4.9	4.9	4.8	0.9
2008	18.209	4.9	5.0	4.9	4.8	0.8
2009	10.458	2.8	2.8	2.8	2.8	0.4
2010	15.528	4.4	4.4	4.4	4.4	2.9
2011	15.561	4.4	4.4	4.4	4.4	1.0
2012	13.133	2.5	2.6	2.6	2.5	1.4
2013	12.231	2.3	2.3	2.3	2.3	1.3
2014	13.491	3.0	2.7	2.6	2.6	1.6
2015	13.853	3.7	2.9	2.9	2.9	0.5
2016	14.481	3.2	2.9	2.8	2.7	0.8
2017	14.396	2.4	2.5	2.4	2.4	0.6
2018	15 025	2.6	2.7	2.6	2.6	1.2
2019	11 814	2.3	2.4	2.2	2.1	1.1

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2018

- The whole time series was recalculated
- National emission factors were checked and new emission factors calculated based on site specific information on emissions and production volumes while recalculating the time series.
- Use of Guidebook 2016 EFs was checked

2020

- Update to Guidebook 2019 EFs 2020-2021

- PAH emissions from iron production were missing from the 2019 submission and were included in the 2020 submission while information on the issue was not included in the 2020 IIR (related to ERT finding)
- PAH emissions were erroneous and duplicated for 2008-2016 for one plant and for 2014-2015 for another plant in submission 2020. These were corrected for submission 2021.

Source-specific planned improvements

None.

Ferroalloys production (2C2)

Changes in ch	apter
February 2021	JMP KS

Source category description

SNAP 040302		FERRO ALLOYS
		Ferrochromium production plants (< 5 plants) are part of integrated stainless steel plants, emission
		reported by the plants
		Production capacity: 600 000t
Emissions	Tier	Source of emissions
NMVOC, SOx,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental
PAHs		permits
TSP, PM10,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental
PM2.5, BC		permits
Pb, Cd, Hg, As,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental
Cr, Cu, Ni, Zn,		permits

Ferrochromium production occurs in the integrated stainless steel plants.

The emissions are either allocated under NFR 2C2 or NFR 2C1 according to information of the main activity of the plant as stated in their environmental permits.

Emission trends

Ferroalloys production is a major source of chromium emissions. In 2016, 2014 and also in 2002 several malfunction situations occurred at a production unit during the year, which could be seen as an increase in the level of zinc, nickel and chrome (also in 2007-2008) emissions.

PAH emissions are related to ferrochrome production, and a new unit duplicating the production rate was started in 2013. The possibility to calculate emissions related to ferrochrome production before 2012 will be studied for next submission.

Emission trends are presented in Figure 4.21

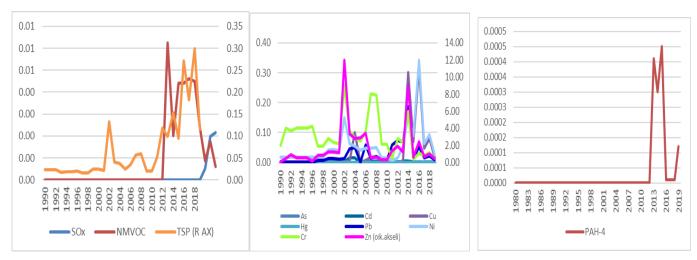


Figure 4.21 Emission trends from ferroalloys production

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.32.

Table 4.32 Contribution of Ferroalloys production (NFR 2C2) to total emissions in 2019.

Pollutant	Emissions ferroalloys	Total emissions	Unit	Share of total emissions	% reported by the
	production			%	plants
NMVOC	<0.001	84.522	Gg	<0.1	100
SOx (as	0.002	28.937	Gg	<0.1	100
PM2.5	0.069	16.622	Gg	0.4	0
PM10	0.098	30.034	Gg	0.3	0
TSP	0.115	44.952	Gg	0.3	100
BC	0.007	3.848	Gg	0.2	0
Pb	0.01	13.22	Mg	<0.1	100
Cd	<0.001	0.794	Mg	<0.1	100
Hg	0.002	0.587	Mg	0.3	100
As	<0.001	2.065	Mg	<0.1	100
Cr	0.487	14.286	Mg	3.4	100
Cu	0.018	40.171	Mg	<0.1	100
Ni	0.027	11.541	Mg	0.2	100
Zn	0.489	130.305	Mg	0.4	100
PAHs	<0.001	22.309	Mg	<0.1	0

Methodological issues

As, Cd, Cr, Cu, Hg, Ni, Pb, Zn, TSP, SOx, and NMVOC

Emissions are reported according to requirements for monitoring and reporting in the environmental permits of the plants. When no plant specific data is available emissions has been calculated.

PM₁₀ and PM_{2.5}

Emissions are calculated using size fraction factors of 85% for PM₁₀ and 60% for PM_{2.5} (Guidebook 2019, EEA 2019) from TSP emissions that are reported by the plants.

Black carbon

Emissions have been calculated using the fraction factor of 10 % of PM_{2.5} (Guidebook 2019, EEA 2019).

PAH

Emissions originate from ferrochrome production which started in 2013. Emissions are reported according to requirements for monitoring and reporting in the environmental permits of the plants.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2019

Change of particle fraction factors according to Guidebook 2019

2021

• PAH emissions were erroneous and duplicated for 2013 and 2015 for one plant in submission 2020. These were corrected for submission 2021.

Source-specific planned improvements

The possibility to calculate emissions related to ferrochrome production before 2012 will be studied for next submission.

Aluminium production (NFR 2C3)

Source category description

There is no primary aluminium production in Finland.

Emissions from the production of secondary aluminium and from aluminium casting were earlier reported under NFR 2C7c due to the old definition of the category, and according to the Guidebook, as noted in the 2017 NECD review should have been allocated in the 2018 submission under NFR 2C3. The allocation was changed, however, not for all plants, and was re-checked for 2019 submission.

SNAP 040301		OTHER
		Secondary aluminium production and aluminium casting Number of plants < 5
		Production capacity: ~50 000 t/a aluminium profiles
Emissions	Tier	Source of emissions
NMVOC, TSP,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental
PM10, PM2.5,		permits
BC, Pb, Cd, As, Zn		
diox, HCB, PCB,	T3/T2	calculated (EF*AD)

The contribution of aluminium production to national total emissions and the share of emissions reported by the operators is presented in Table 4.33.

Table 4.33 Contribution of Aluminium production (NFR 2C3) to total emissions in 2019.

Pollutant	Emissions ferroalloys production	Total emissions	Unit	Share of total emissions %	% reported by the plants
PM2.5	<0.001	16.622	Gg	<0.1	0
PM10	<0.001	30.034	Gg	<0.1	0
TSP	<0.001	44.952	Gg	<0.1	58
BC	<0.001	3.848	Gg	<0.1	0
Pb	<0.001	13.22	Mg	<0.1	100
Cd	<0.001	0.794	Mg	<0.1	100
As	<0.001	2.065	Mg	<0.1	100

Zn	0.089	130.305	Mg	<0.1	100
PCDD/ PCDF	<0.001	12.132	g I-Teq	<0.1	0
HCB	0.033	22.637	kg	0.1	0
PCBs	0.087	22.78	kg	0.4	0

Emission trends

Emission trends are presented in Figure 4.22

The increase in Zn emissions in 2019 ia related to the Al quality.

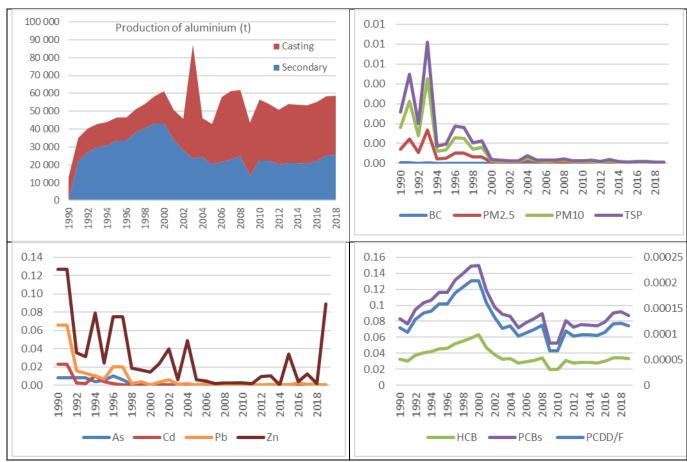


Figure 4.22 Emissions from aluminium production

Methodological issues

Particles

TSP emissions are reported by the plants according to their monitoring and reporting obligations.

 PM_{10} and $PM_{2.5}$ emissions from the production of secondary aluminium are calculated using size fraction factors of 70 % for PM_{10} and of 27.5 % for $PM_{2.5}$ (Guidebook 2019).

Heavy metals

Arsenic, cadmium, lead and zinc emissions are reported by the plants according to their monitoring and reporting obligations. Heavy metal emissons are quite small but the quality of the used raw material in the process impacts to the emissions.

POP emissions

PCDD/F, PCB, HCB and PCP emissions from production of secondary aluminium as well as PCB emissions from aluminium casting are calculated for plants using emission factors listed in Table 4.34a and activity data presented in Table 4.34b.

PCDD/F emissions were calculated for years before 2017 using an IEF derived from data reported by the plants, thus the estimates differ from the revised estimates provided to the TERT during 2020 NECD review.

Table 4.34a Emission factors for POP emissions

Pollutant	Process	EF	Reference
PCDD/F	secondary aluminium	0.0047 ug I-TEQ/t	SYKE, 2021
HCB	secondary aluminium	1.365 mg/t	SYKE, 2007
PCB	secondary aluminium	3.4 mg/t	(iPRO, 2006 No method in the Guidebook
PCP	secondary aluminium	0.128 mg/t	SYKE, 2007
PCB	aluminium castin	0.135325 mg/t	Toda, 2005. No method in the Guidebook

Table 4.34b Secondary aluminium production and aluminium casting volumes

Duoduotio	on of cocondom objective (A)	Aluminium casting (t)		
	on of secondary aluminium (t) eration of Finnish Technology Industries)	(Expert estimate at SYKE 1990-1997) S	Statistics Finland 1998	
(The read	eration of Finnish Technology muustries)	onwards		
1990	23 926	1990	13 000	
1991	22 054	1991	13 000	
1992	27 249	1992	13 000	
1993	29 905	1993	13 000	
1994	30 828	1994	13 000	
1995	33 539	1995	13 000	
1996	33 577	1996	13 000	
1997	38 229	1997	13 000	
1998	40 525	1998	13 378	
1999	43 242	1999	15 193	
2000	43 361	2000	17 799	
2001	34 252	2001	16 548	
2002	28 014	2002	17 910	
2003	23 652	2003	63 907	
2004	24 629	2004	21 421	
2005	20 242	2005	22 602	
2006	21 696	2006	36 146	
2007	22 904	2007	38 240	
2008	24 867	2008	37 132	
2009	14 355	2009	29 258	
2010	22 477	2010	33 896	
2011	22 400	2011	31 573	
2012	20 238	2012	30 649	
2013	20 991	2013	32 929	
2014	20 906	2014	32 929*	
2015	20 490	2015	32 929*	
2016	22 071	2016	32929*	
2017	25 298	2017	32 929*	
2018	25 709	2018	32 929*	
2019	24 724	2018	32 929*	

Note: Values are total production amounts. If plant has reported emissions to the supervising authoritites (VAHTI), emissions are not calculated for the one in question

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

[•] due the lack of activity data, year's 2013 data is used

Source-specific recalculations including changes made in response to the review process

2018

- The allocation of secondary aluminium production was partly reallocated to NFR 2C3 from NFR 2C7c according to the recommendations from the NECD 2017 review.
- Small particle distribution factors were updated according to the recommendations from the NECD 2017 review.

2019

- The allocation of one plant is corrected and moved to NFR 2C3 in the 2019 submission. 2020
- The allocation of PCDD/PCDF were corrected for years 2009, 2013 and 2016 from category 2C7c to category 2C3.

2021

- PCDD/F emissions were calculated for years before before 2017 using an IEF derived from data reported by the plants.

Source-specific planned improvements

None

Magnesium production (2C4)

No magnesium production occurs in Finland.

Lead production (2C5)

No lead production occurs in Finland.

Zinc production (NFR 2C6)

Changes in chapter
February 2021 KS JMP

Source category description

SNAP 040309c		
Key category for Cd (T1) Zn /L1)		Zinc production plants (< 5 plants), emissions both reported by the plants and calculated at the inventory agency
Emissions	Tier	Source of emissions
TSP, PM ₁₀ ,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
PM _{2.5}		
NMVOC	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
Pb, Cd, Hg,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
As, Cr, Cu, Ni,		
Zn,		
PCDD/F	T2	calculated (EF*AD)

Special high-grade zinc is produced in Finland by an electrolytic process in a smelter. The electrolytic process includes four main stages: 1) Roasting of zinc concentrate in temperature of more than 900 °C (ZnO as product), 2) Leaching stage, where the zinc oxide is separated from the other calcines 3) Impurities elimination 4) Electrolysis. According to 2006 IPCC Guidelines this process does not result in non-energy CO₂ emissions. (Finlands GHG-NIR, 2016)

Emission trends

Zinc production is a source of heavy metals, NMVOC and PCDD/F. Process emissions fluctuate annually (e.g. zinc) depending on operation, raw material and products. Zn emissions from this sector contribute to nearly 4% of the total emissions.

There is slight increase in emission levels in 2019 due to disturbances in the electrolytics process.

Ni emissions occurred in 1992-1996, whereafter the process causing these emissions was closed down (emissions in 1990-1991 are included in the energy sector).

Cd emissions starting from 2002 are related to zinc production.

Particle emissions are most of the years allocated under the energy sector.

Emission trends are presented in Figure 4.23.

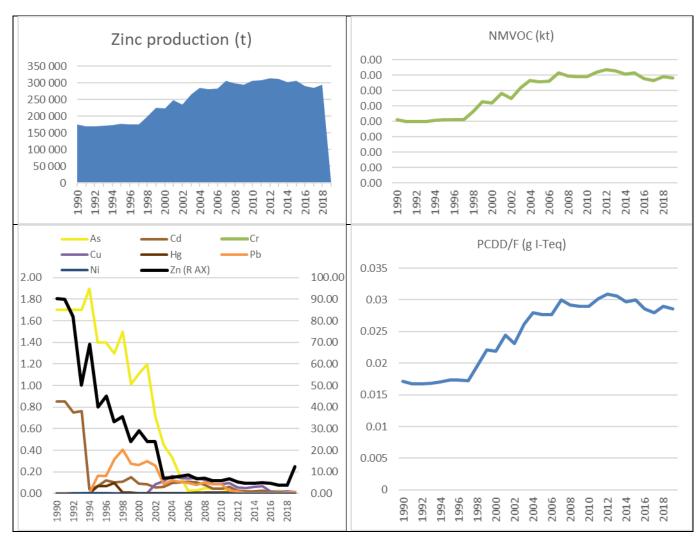


Figure 4.23 Emission trends from zinc production

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.35.

Table 4.35 Contribution of Zinc production (NFR 2C6) to total emissions in 2019.

Pollutant	Emissions from zinc production	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	0.001	119.817	Gg	<0.1	0
Pb	0.013	13.22	Mg	<0.1	100
Cd	0.011	0.794	Mg	1.4	100
Hg	0.002	0.587	Mg	0.3	100
As	0.009	2.065	Mg	0.5	100
Cu	0.014	40.171	Mg	<0.1	100
Zn	12.393	130.305	Mg	9.5	100
PCDD/ PCDF	0.029	12.132	g I-Teq	0.2	0

Methodological issues

SOx

Zinc production occurs alongside sulphur productios and SO_2 emissions from zinc production are utilised in the sulphur production. Therefore, SO_2 emissions are not emitted from zinc production except in exceptional situations such as malfunctioning or during start-up and shut-down periods.

Adding the above explanation for the non-occurring SO₂ emissions was recommended by the NECD 2017 review. In addition, the TERT recommended to replace the notation key "NA" with "NO". However, the notation key has not been changed, because the use of "NO" means that the activity does not exist and the use of the notation key "NA" means that the emission is not relevant/occurring.

TSPs and heavy metals (As, Hg, Cd, Cu, Pb, Zn) (Key category for Cd and Zn, T3)

The plants report these emissions according to the monitoring programmes in the environmental permits to the environmental authorities and the data are available in YLVA for use in the inventories. These emissions are included in the inventory as the difference between data reported by the plants and the default emissions calculated on basis of energy consumption (IIR Part 2 Energy page X). It will be further studied in the coming years, if the energy emission factor should be revised to be higher or if these really are process emissions.

Cd emissions starting from 2002 are related to zinc production.

Ni emissions occurred in1992-96 from zinc white production which occurred these years. Ni emissions from 1990 to 1991 are included in the energy sector emissions.

When no plant specific data is available emissions have been calculated using plant specific activity data and IEFs.

Small particles

Small particle emissions in 2019 are included in NFR 1A2b. PM_{10} and $PM_{2.5}$ emissions are calculated using size fraction factors of 91% for PM_{10} and 81% or $PM_{2.5}$ from TSP emissions, which are reported by the plants (Guidebook 2019).

NMVOC and PCDD/F

NMVOC and PCDD/F emissions from primary zinc smelting in hot dip galvanizing processes were reported to the supervising authorities for the year 2007 only. As these emissions were not reported for the years 2008-2019, emissions are calculated for the years after 2007 based on production data (seeTable 4.37) of the plant and a plant specific emission factor (calculated as IEF from 2007 data). An implied emission factor 0.005 t/t for NMVOC and 0.098 t/t for PCDD/F (SYKE, 2009) have been used for 1990-2019. Production volumes are available either at plant level in YLVA or from the Federation of Finnish Technology Industries (Table 4.36). The reported emissions are presented Table 4.37.

Table 4.36 Production of zinc in 1990-2019. (reported by plants to the YLVA-database)

Year	Zinc production (t)	Year	Zinc production (t)
1990	175 000	2006	282 261
1991	170 389	2007	305 543
1992	170 523	2008	297 772
1993	170 934	2009	295 049
1994	173 244	2010	307 144
1995	176 583	2011	307 352
1996	176 223	2012	314 742
1997	175 334	2013	311 682
1998	198 940	2014	302 024
1999	225 190	2015	305 717
2000	222 881	2016	290 599
2001	248 816	2017	284 992
2002	235 337	2018	295 029
2003	265 853	2019	290 843
2004	284 525		
2005	281 904		

Table 4.37 NMVOC and PCDD/F emissions from zinc production.

Year	NMVOC(kg)	PCDD/F (g I-TEQ)	Year	NMVOC(kg)	PCDD/F (g I-TEQ)
1990	0.818	0.017	2010	1.435	0.030
1991	0.796	0.017	2011	1.436	0.030
1992	0.797	0.017	2012	1.471	0.031
1993	0.799	0.017	2013	1.457	0.031
1994	0.810	0.017	2014	1.412	0.030
1995	0.825	0.017	2015	1.429	0.030
1996	0.824	0.017	2016	1.358	0.029
1997	0.819	0.017	2017	1.331	0.028
1998	0.930	0.020	2018	1.379	0.029
1999	1.052	0.022	2019	1.359	0.029
2000	1.042	0.022			
2001	1.163	0.024			
2002	1.100	0.023			
2003	1.243	0.026			
2004	1.330	0.028			
2005	1.318	0.028			
2006	1.319	0.028			
2007	1.428	0.030			
2008	1.391	0.029			
2009	1.379	0.029			

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2017

- NMVOC emissions for whole time series added to the inventory in 2017 submission. 2018
- For the not occurring SO2 emissions, the 2017 NECD review TERT recommended to replace the notation key "NA" with "NO". However, the notation key has not been changed, because the use of "NO" means that the activity does not exist and the use of the notation key "NA" means that the emission is not relevant/occurring.

2019

- The allocation of emissions between the energy/processes sectors was checked 2020
- Particle fractions updated according to Guidebook 2019

Source-specific planned improvements

None

Copper production (NFR 2C7a)

Changes in chapter					
February 2021 JMP KS					

Source category description

SNAP 040309a		SNAP-NAME
Key category for HCB (L1, T1) Se (L1, T1) As (L1)		Secondary copper production plants (< 5 plants) and production of upgraded copper products. Emissions both calculated or reported by the plants Production capacity see table 4.39
Emissions	Tier	Source of emissions
SO _x , CO, NMVOC	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
TSP, PM ₁₀ , PM _{2.5} ,	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
Pb, Cd, Hg, As, Cu, Ni, Se, Zn,	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
PCDD/F, HCB, PCB, BC	T2	calculated (EF*AD)

Emission trends

Primary copper production is a major source of HCB emissions. Also heavy metals (arsenic and selene) and PCDD/F emissions occur form copper production (Figure 4.24). Other pollutants contribute less than 1% of the total emissions 4.38. Emission trends are mainly decreasing due to increased abatement. PCDD/F emissions have increased since 2014 due to commence of secondary copper production, earlier only primary copper have been produced.

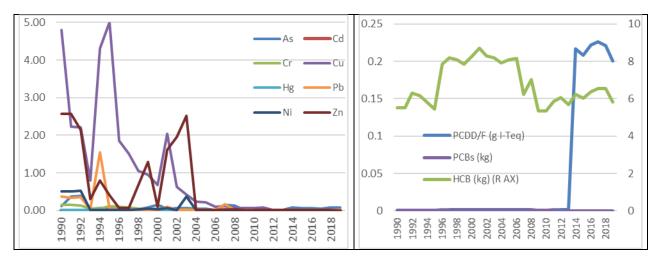


Figure 4.24 Emission trends in copper production

Table 4.38 Contribution of Secondary copper production (NFR 2C7a) to total emissions in 2019.

Pollutant	Emissions from copper production	Total emissions in	Unit	Share of total emissions %	% reported by the plants
NMVOC	<0.001	84.522	Gg	<0.1	0
SOx (as SO2)	0.111	28.937	Gg	0.4	1.6
PM2.5	<0.001	16.622	Gg	<0.1	0
PM10	<0.001	30.034	Gg	<0.1	0
TSP	<0.001	44.952	Gg	<0.1	25.2
BC	<0.001	3.848	Gg	<0.1	0
СО	0.011	344.933	Gg	<0.1	100
Pb	0.002	13.22	Mg	<0.1	7.3
Cd	<0.001	0.794	Mg	<0.1	100
Hg	<0.001	0.587	Mg	<0.1	0
As	0.081	2.065	Mg	3.9	86.6
Cr	<0.001	14.286	Mg	<0.1	100
Cu	<0.001	40.171	Mg	<0.1	100
Ni	<0.001	11.541	Mg	<0.1	0
Se	0.054	0.472	Mg	12.8	100
Zn	<0.001	118.644	Mg	<0.1	100
PCDD/PCDF	0.2	14.356	g I-Teq	1.7	0
НСВ	5.821	22.637	kg	25.7	0
PCBs	<0.001	22.78	kg	<0.1	0

Methodological issues

Total suspended particles, heavy metals (As, Cd, Cu, Pb, Zn, Ni, Hg) and sulphur dioxide (Key category for As and SE, T3)

Emissions are mainly reported by the plants according to the monitoring requirements in the environmental permits. When no plant specific data is available emissions has been calculated.

Small particle emissions and black carbon

 PM_{10} and $PM_{2.5}$ emissions are calculated using size fraction factors 78 % for PM_{10} and 59 % for $PM_{2.5}$ (Guidebook 2019) from TSP emissions. Black carbon emissions are calculated using the emission factor 0.1 % of $PM_{2.5}$ (Guidebook B2019, EEA 2019).

POPs (Key category for HCB, method T2)

PCDD/F, PCB and HCB emissions from production of copper as well as PCB and HCB emissions from wrought copper manufacturing are calculated separately for each plant using emission factors listed below

- PCDD/F: production of copper 0.01ug I-TEQ/t (Guidebook 2019)
- PCDD/F: production of secondary copper 50 ug I-TEQ/t (Guidebook 2019)
- HCB: production of copper 39 mg/t (Pacyna, 2003)
 - wrought copper production 17.5235 mg/t (Toda 2005)
- PCB: production of copper 0.9 ug/t (Guidebook 2019)
 - wrought copper production 3.7 ug/t (Guidebook 2019).

Activity data used in the calculation is presented in Table 4.39 and the emissions in Table 4.40.

Table 4.39 Copper production volumes 1990-2019 (reported by plants to the VAHTI-database)

Year	Copper production (t)	Wrought copper	Year	Copper production (t)	Wrought copper
		production (t)			production (t)
1990	90 200	113 941	2010	117 900	69 189
1991	90 100	113 941	2011	124 642	57 133
1992	110 500	113 941	2012	138 374	38 795
1993	107 000	113 941	2013	128 959	37 930
1994	98 200	113 941	2014	143 765*	36 648
1995	88 300	113 941	2015	137 682*	36 713
1996	150 300	113 941	2016	146 871*	36 947

Year	Copper production (t)	Wrought copper production (t)	Year	Copper production (t)	Wrought copper production (t)
1997	159 000	113 941	2017	149 605*	41 486
1998	156 000	113 941	2018	147 203*	45 984
1999	149 600	113 941	2019	132 668*	36 900
2000	155 400	126 287			
2001	169 250	120 449			
2002	160 900	115 477			
2003	160 566	109 683			
2004	151 647	114 007			
2005	157 933	110 707			
2006	164 306	100 391			
2007	118 911	90 933			
2008	142 154	83 454			
2009	110 479	58 332			

^{*}production of secondary copper included since 2014

Table 4.40 POP emissions from copper production

Year	HCB (kg)	PCDD/F (g I-TEQ)	PCB (kg)	Year	HCB (kg)	PCDD/F (g I-TEQ)	PCB (kg)
1990	5.51	0.90	0.50	2010	5.81	1.18	0.36
1991	5.51	0.90	0.50	2011	5.86	1.25	0.32
1992	6.31	1.11	0.52	2012	6.08	1.38	0.27
1993	6.17	1.07	0.52	2013	5.69	1.29	0.26
1994	5.83	0.98	0.51	2014	6.25	217.0	0.26
1995	5.44	0.88	0.50	2015	6.01	207.9	0.26
1996	7.86	1.50	0.56	2016	6.38	221.7	0.29
1997	8.20	1.59	0.56	2017	6.54	225.9	0.29
1998	8.08	1.56	0.56	2018	6.54	222.2	0.30
1999	7.83	1.50	0.56	2019	5.82	200.3	0.26
2000	8.27	1.55	0.61				
2001	8.71	1.69	0.60				
2002	8.30	1.61	0.57				
2003	8.18	1.61	0.55				
2004	7.91	1.52	0.56				
2005	8.10	1.58	0.55				
2006	8.17	1.64	0.52				
2007	6.23	1.19	0.44				
2008	7.01	1.42	0.44				
2009	5.33	1.10	0.32				

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2014

- Activity data for copper production was corrected.

2018

- Emissions from this NFR category were checked to include all plants according to the recommendation of the NECD 2017 review.
- PCB and PCDD/F the emission factors was updated to correspond to the revised EF in Guidebook 2016. The change increased the PCDD/F emissions to be 10-fold.

2019

- Sox and PM2.5 emissions for 2015 and 2014 are now corrected (the emission values had accidentally been transposed in the 2017 submission.)
- Re-check of Guidebook 2016 EFs

2020

- In the 2019 submission PCDD/F emissions from copper production were allocated to an incorrect NFR by a mistake. The allocation was corrected to the 2020 submission
- Guidebook 2019 EFs adopted

2021

Activity data updated for years 2016 and 2017

Source-specific planned improvements

None

Nickel production (NFR 2C7b)

Changes in chapter
February 2021 JMP KS

Source category description

SNAP 040305		NICKEL PRODUCTION
		< 5 plants
Key categor	y for Ni	Production capacity 60 000- 90 000 tonnes nickel and nickel chemicals per year
Emissions	Tier	Source of emissions
SO2, NMVOC	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
NH3, Ni	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

Emission trend

Emission trends are presented in Figure 4.25

Nickel production is a major source of Ni emissions, while other pollutants contribute less than 1% of the total emissions. Nickel emissions fluctuate in the time series and there has been exceptional emissions e.g. in 2018 due to malfunctioning of abatement techniques. Peak in NMVOC emissions in 2016 and peak in SO_x emission in 2017 were due to malfunctioning of abatement techniques.

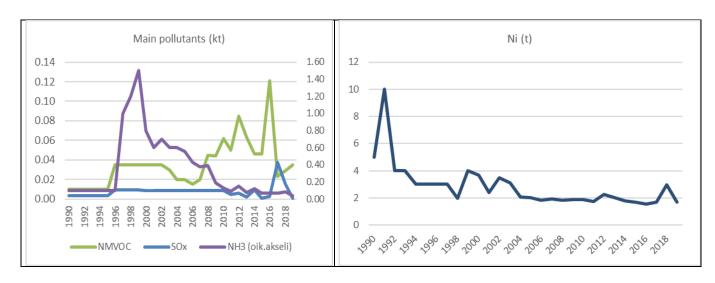


Figure 4.25 Emission trends in nickel production

The shares of emissions of total emissions and shares reported by the plants are presented Table 4.41.

Table 4.41 Contribution of Nickel production (NFR 2C7b) to total emissions in 2019.

Pollutant	Emissions from nickel production	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	0.035	84.522	Gg	<0.1	100
SOx (as SO2)	>0.001	28.937	Gg	<0.1	100
NH3	0.041	31.593	Gg	0.1	100
Ni	1.691	11.541	Mg	14.7	100

Methodological issues

(Key category for Ni emissions, T3)

NMVOC, NH₃, SO_x and nickel emissions are reported by the plants according to the monitoring requirements in the environmental permits

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

None.

Source-specific planned improvements

None.

Changes in chapter February 2021 KS JMP

Source category description

SNAP 040306		ALLIED METAL MANUFACTURING
		Number of plants <5 Production capacity:~1000 t casting products
Emissions	Tier	Source of emissions
Cu, Pb, Zn, Ni	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
SNAP 040307		GALVANIZING
		Number of plants 7 Production capacity: varies, in smaller plants ~10 000 t steel structures is hot galvanized in a year, in bigger plant ~1 000 000 tonnes of steel in coils is reprocessed in a year
Emissions		Source of emissions
Zn, Cr	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
NMVOC, NH ₃ , TSP, PM ₁₀ , PM _{2.5}	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

SNAP 040309z		OTHER
		Recycling of waste and scrap Number of plants <5 Production capacity: waste metals and waste containing metals 200 000 t/a, decomissioned vechicles 80 000 t/a.
Emissions	Tier	Source of emissions
	1101	Out Ce Of efficacions
As, Cd, Pb, Zn,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

SNAP 040309z		OTHER
		Surface treatment of metals Number of plants<5 Production capacity: not available, plenty of small plants, supply and demand varies yearly
Emissions	Tier	Source of emissions
TSP, PM10, PM2.5	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
Pb, Zn, Cr, Ni,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
NMVOC, NH3,	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

SNAP 040309z		OTHER
		Cable manufacturing Number of plants <5 Production capacity: ~500 000 t/a cables
Emissions	Tier	Source of emissions
NMVOC	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

SNAP 040309z		OTHER
		Zinc wire manufacturing Number of plants <5 Production capacity: ~10 000 t/a wire
Emissions	Tier	Source of emissions
Zn	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

SNAP 040309z		OTHER
		Lock Manufacturing Number of plants <5 Production capacity: not available
Emissions	Tier	Source of emissions
NMVOC	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
Zn,Cr	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
TSP, PM10, PM2.5	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

SNAP		OTHER
040309z		
		Chromite mine and concentration plant
		Number of plants <5
		Production capacity: not available
Emissions	Tier	Source of emissions
NMVOC	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

SNAP 040309z		OTHER Handling of FeCr slag Number of plants <5 Production capacity: not availble
Emissions	Tier	Source of emissions
TSP, PM10, PM2.5	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

SNAP 040309z		OTHER Manufacturing of small caliber cartridges Number of plants <5 Production capacity: ~80 000 000 catridges, ~60 000 000 bullets
Emissions	Tier	Source of emissions
Pb	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

SNAP 040309z		OTHER Handling of noble metals Number of plants <5 Production capacity: not available
Emissions	Tier	Source of emissions
PCB	T1	calculated (EF*AD)

SNAP 040309z		OTHER Handling of copper and nickel concentrates Number of plants <5 Production capacity ~70 000 t/a raw nickel matte
Emissions	Tier	Source of emissions
TSP, PM10, PM2.5	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
As, Cu, Pb	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
NMVOC	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

SNAP 040309z		OTHER Manufacturing of nails Number of plants <5 Production capacity: ~5000 t/a nails
Emissions	Tier	Source of emissions
Pb, Zn	T3	reported by the plants according to the monitoring and reporting obligations in their environmental permits
TSP, PM10, PM2.5	Т3	reported by the plants according to the monitoring and reporting obligations in their environmental permits

Around thirty industrial installations that report their emissions to the authorities and for which data is available in VAHTI/YLVA database are included under NFR 2C7c. The installations work in recycling of waste and scrap metals, surface treatment, galvanizing, metallic construction mountings, cable manufacturing, and manufacturing of nails and locks. Due to the competitive position of the installations it is difficult to publish production capacities in the list presented above and in many cases there is only one installation working in a specific field.

Emission trends

Emissions in NFR 2C7c originate from several activities. The peak in NH₃ emissions in 1999 is related to a malfunction in NO_x abatement (Figure 4.26)

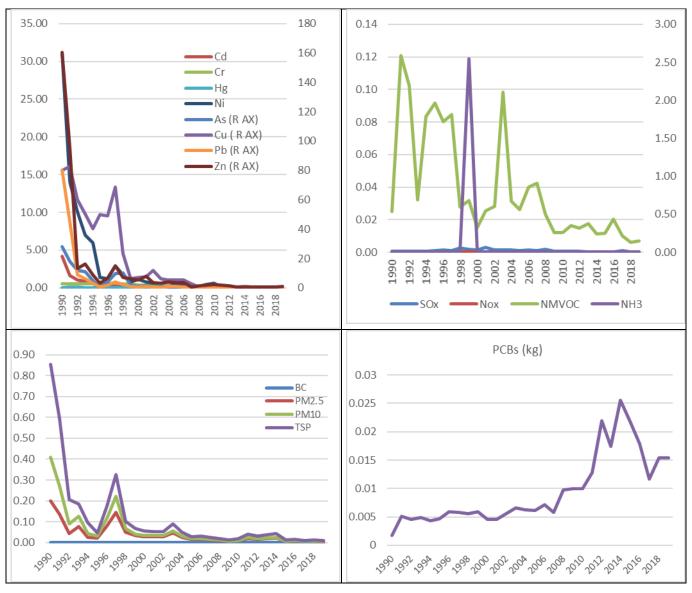


Figure 4.26 Emission trends in Other metal production

The shares of emissions of total emissions and shares reported by the plants are presented Table 4.42.

Table 4.42 Contribution of Other metal production (NFR 2C7c) to total emissions 2019.

Pollutant	Emissions from other metal production	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	0.007	84.522	Gg	<0.1	100
SOx (as SO2)	<0.001	28.937	Gg	<0.1	100
NH3	<0.001	31.593	Gg	<0.1	100
PM2.5	0.005	16.622	Gg	<0.1	0
PM10	0.006	30.034	Gg	<0.1	0
TSP	0.009	44.952	Gg	<0.1	100
Pb	0.263	13.22	Mg	2.0	100
Cd	0.002	0.794	Mg	0.2	100
Hg	0.006	0.587	Mg	1.1	100
As	0.212	2.065	Mg	10.3	100
Cr	0.005	14.286	Mg	<0.1	100
Cu	0.246	40.171	Mg	0.6	100
Ni	0.020	11.541	Mg	0.2	100
Se		0.42		0.4	0
Zn	0.002	130.305	Mg	0.6	100
PCBs	0.015	22.78	kg	<0.1	0

The process emissions fluctuate annually according to operation, e.g. copper emissions originate from smelting.

Methodological issues

Heavy metals (Key category for Pb, Cd, As, Cu, Se and Zn emissions, method T3) As, Cd, Cr, Cu, Pb, Ni, Hg and Zn emissions are reported by the plants according to the monitoring requirements in the environmental permits.

Ammonia

Use of ammonium chloride in hot galvanizing causes ammonia emissions. Only one plant uses ammonium chloride, the other plants are using electrolytic resurfing. The emissions are reported by the plants

The peak NFR2 (Industry) in 1999 is due to an accidental emission reported by the plant to the environmental authorities

Particles

TSP emissions are reported by the plants according to their monitoring and reporting obligations.

 PM_{10} and $PM_{2.5}$ emissions are calculated using size fraction factors of 60 % for PM_{10} and of 50 % for $PM_{2.5}$ (AEAT, 2000). There is no method in the Guidebook.

For galvanizing (SNAP 040307) size fraction factors of 92 % for PM_{10} and of 82 % for $PM_{2.5}$ (AEAT, 2000).

HCB

In discussion with the plant in 2020 it was confirmed that HCB emissions could not occur from the processes. The notation key has now been changed into NA for the whole time series. There is no method in the Guidebook.

Precious metals

From production of gold and silver metals also PCB emissions are calculated with emission factor 159.795 mg/t (Toda, 2005) and using activity data presented in Table 4.43

Table 4.43 Precious metals; production of gold and silver (t) 1990-2019 (Statistics Finland)

Year	Production of gold and silver (t) (Statistics Finland)	Year	Production of gold and silver (t) (Statistics Finland)
1990	31.8	2006	44.4
1991	32.2	2007	36.0
1992	28.6	2008	61.6
1993	30.4	2009	62.1
1994	27.4	2010	70.6
1995	29.1	2011	80.0
1996	36.9	2012	137
1997	36.1	2013	109
1998	34.7	2014	160
1999	36.8	2015	137
2000	28.6	2016	112
2001	28.4	2017	96
2002	34.6	2018	96
2003	41.4	2019	96
2004	38.9		
2005	38.2		

POP emissions from other metal production are presented in Table 4.45.

Table 4.45 POP emissions from other metal production.

Year	HCB (kg)	PCB (kg)	Year	HCB (kg)	PCB (kg)
1990	NA	0.005	2010	NA	0.011
1991	NA	0.005	2011	NA	0.013
1992	NA	0.005	2012	NA	0.022
1993	NA	0.004	2013	NA	0.017
1994	NA	0.005	2014	NA	0.026
1995	NA	0.006	2015	NA	0.022
1996	NA	0.006	2016	NA	0.018
1997	NA	0.006	2017	NA	0.015
1998	NA	0.006	2018	NA	0.015
1999	NA	0.005	2019	NA	0.015
2000	NA	0.005			
2001	NA	0.006			
2002	NA	0.007			
2003	NA	0.006			
2004	NA	0.006			
2005	NA	0.007			
2006	NA	0.006			
2007	NA	0.010			
2008	NA	0.010			
2009	NA	0.005			

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2018

- Check of Guidebook 2016 EFs

2020

- In the 2019 submission PCDD/F emissions from copper production were allocated to NFR 2C7c by mistake, the allocation was corrected.

2021

- In 2020 it was confirmed with the plant that HCB emissions do not occur from the processes. The notation key has now been changed into NA for the whole time series.
- Erroneous facility reported As, Cd, Cr, Cu, Ni, Pb and Zn emissions were corrected for one plant for 2017-2018. In addition, erroneous facility reported Zn emissions were corrected for another plant for 2018.
- Ammonia emissions from one plant were incorrectly allocated under category 1A2b in submission 2020. The allocation of these emissions under category 2C7c was corrected in submission 2021.

Source-specific planned improvements

None.

Update of text		
February 2021 JMP KS		

Source category description

SNAP 040211		Storage, handling and transport of metal products	
		storage and handling of iron ore.	
Emissions	Tier	Emission source	
TSP, PM ₁₀ , PM _{2.5}	T2	calculated (EF*AD)	

Emission trend

The particle emission trend (kilotonnes) is presented in Figure 4.27

Figure 4.27 Particle emissions from NFR 2C7d

The shares of emissions of total emissions and shares reported by the plants are presented in Table 4.46.

Table 4.46 Contribution of Storage, handling and transport of metal products (NFR 2C7d) to total emissions 2019.

Pollutant	Emissions from Storage, handling and transport of metal products i	Total emissions	Unit	Share of total emissions %	% reported by the plants
PM2.5	<0.001	16.622	Gg	<0.1	0
PM10	0.005	30.034	Gg	<0.1	0
TSP	0.010	44.952	Gg	<0.1	0

Methodological issues

Particle emissions from storage, handling and transport of iron ore are calculated with emissions factors presented in Guidebook 2019 for whole timeseries.0,002 t/t, (TSP); 0,000094 t/t (PM₁₀) and 0,000008 t/t (PM_{2.5}),). Production of iron ore is presented in Table 4.47 and particle emissions in Table 4.48.

Table 4.47 Activity data for iron ore in 1990-2019 (Customs Statistics ULJAS)

YEAR	Iron ore (t))	YEAR	Iron ore	YEAR	Iron ore (t)
1990	3 058 362	2000	3 917 135	2010	3 055 661
1991	3 085 141	2001	3 916 263	2011	3 611 830
1992	3 363 742	2002	3 791 709	2012	3 224 219
1993	3 360 634	2003	4 238 321	2013	2 542 827
1994	3 617 472	2004	3 921 570	2014	3 094 723
1995	2 964 994	2005	4 215 633	2015	3 428 486
1996	3 305 776	2006	3 484 500	2016	3 519 551
1997	3 732 484	2007	3 159 252	2017	3 169 204
1998	3 922 551	2008	3 124 424	2018	3 806 107
1999	3 818 566	2009	2 206 222	2019	2 617 816

Table 4.48 Calculated particulate emissions from storage, handling and transport of metal products

Year	PM _{2,5} (t)	PM ₁₀ (t)	TSP (t)	Year	PM _{2,5} (t)	PM ₁₀ (t)	TSP (t)
1990	0.61	6.12	12.23	2010	0.61	6.11	12.22
1991	0.62	6.17	12.34	2011	0.72	7.22	14.45
1992	0.67	6.73	13.45	2012	0.64	6.45	12.90
1993	0.67	6.72	13.44	2013	0.51	5.09	10.17
1994	0.72	7.23	14.47	2014	0.62	6.19	12.38
1995	0.59	5.93	11.86	2015	0.69	6.86	13.71
1996	0.66	6.61	13.22	2016	0.70	7.04	14.08
1997	0.75	7.46	14.93	2017	0.63	6.34	12.68
1998	0.78	7.85	15.69	2018	0.76	7.61	15.22
1999	0.76	7.64	15.27	2019	0.52	5.24	10.47
2000	0.78	7.83	15.67				
2001	0.78	7.83	15.67				
2002	0.76	7.58	15.17				
2003	0.85	8.48	16.95				
2004	0.78	7.84	15.69				
2005	0.84	8.43	16.86				
2006	0.70	6.97	13.94				
2007	0.63	6.32	12.64				
2008	0.62	6.25	12.50				
2009	0.44	4.41	8.82	-			

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 5 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

None.

Source-specific planned improvements

None.

Changes in chapter					
January 2020	JMP KS				

Source category description

The Other solvent and product use category covers domestic solvent use, road paving with aspahalt, asphalt roofing, coating applications, degreasing, dry cleaning, chemical producst, printing and other solvent and product use. NMVOC and particle emissions are typical emissions for these categories.

Under the Other product use category, use of tobacco and fireworks are sources of heavy metals and POP emissions. Acitivites and emissions reported under the Other solvent and product use categories are presented in Table 4.49.

Table 4.49 Activities and emissions reported under the Other solvent and product use categories

NFR	Processes	Description	Emissions reported
2D3a	Domestic solvent use including fungicides	Personal care and cosmetics, household cleaning, car dare and other products	NMVOC
2D3b	Road paving with asphalt	ad paving with asphalt	
2D3c	Ashalt roofing	Aspahlt mixing plants	NMVOC
2D3d	Coating applications	Decorative, industrial and other coating	NMVOC, TSP, PM10, PM2,5
2D3e	Degreasing	Chlorinated organic solvents are not produced in Finland, all the used solvents are imported.	NMVOC, NH3, TSP, PM10, PM2,5
2D3f	Dry cleaning	Included in degreasing (2D3e)	NMVOC's included in degreasing, all other emissions NA
2D3g	Chemical Products	 pharmaceutical industry textile and leather industry plastics manufacturing and handling rubber conversion manufacture of paints, inks and glues manufacturing adhevise, tapes and films 	NMVOC, TSP, PM10, PM2,5, NH3, SOx, Cd, As, Cr, Ni
2D3h	Printing	printing	NMVOC, SOx
2D3i	Other solvent use	 glass and mineral wool enduction fat, edible oil extraction preservation of wood industrial application of glues and adhesives 	NMVOC, SOx, NH3, TSP, PM10, PM2,5, BC, PAHs, HCB
2G	Other product use	Use of fireworks and tobacco	As, Cd, Cr, Cu, Hg, Pb, CO, NH3, NOx, SOx, NMVOC, TSP, PM10, PM2,5, BC, PCDD/PCDF, PAHs

Emissions of those plants that report their emissions to the supervising authorities⁹ according to the monitoring requirements in the environmental permits are in most cases reported as IE. This is because the reporting obligations determined in the monitoring programmes are for the total emissions of the plants and not separated between fuel combustion and other processes. Thus it has not been possible to make a complete split between emissions from fuel based and non-fuel based sources. In cases where it has been possible to separate fuel combustion emissions from process emissions, these are reported separately under the NFR 2D categories. For those plants that report only total emissions, the split is done where it has been possible based on the default emissions calculated on basis of fuel consumption which is reduced from the emissions reported by the plants and reported under NFR 1A2gviii.

78

Domestic solvent use including fungicides (NFR 2D3a)

Changes in ch	apter
February 2021	KS & JMP

Source category description

SNAP 060408 SNAP 060411 Key category for NMVOC		Domestic solvent use (other than paint application) Domestic use of pharmaceutical products Use of personal care and cosmetics, household cleaning products, car care products and other products
Emissions	Tier	
NMVOC	T2	NMVOC (calculated)
Нg		Hg from fluorescent tubes are reported under 1A1a by the hazardous waste incineration plant (with energy recovery)

Emission trend

Emission trends are presented in Figure 4.28.

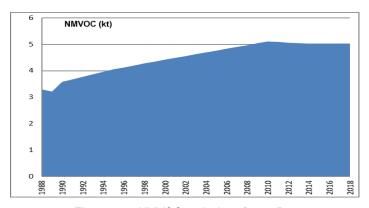


Figure 4.28 NMVOC emissions from 2D3a

The shares of emissions of national totals and shares reported by the operators are presented in Table 4.50.

Table 4.50 Contribution of domestic solvent use (NFR 2D3a) to total NMVOC emissions in 2019.

Pollutant	Emissions from domestic solvent use	Total emissions in	Unit	Share of total emissions %	% reported by the plants
NMVOC	5.032	84.522	Gg	6.0	0

NFR 2D3a is a key category for NMVOC emission, which are calculated at a T2 method.

The emissions are calculated using a model for NMVOC emissions from household products in which estimates for the years 1990, 1995, 2000, 2005, 2010 and 2014 have been made. The summary of the results is presented in Table 4.51. The purpose is to update the model every 5 years.

Table 4.51 NMVOC emissions from Household Products Use in 1990, 1995, 2000, 2005, 2010 and 2014 (Rantanen et al., 2015)

NMVOC emissions [kt/a]	1990	1995	2000	2005	2010	2014
Cosmetics and toiletries	1.80	1.84	2.10	2.23	2.69	2.69
Household cleaning products	0.61	0.58	0.61	0.68	0.64	0.68
Car care products	0.42	0.84	0.90	1.02	0.90	0.74
Other products	0.02	0.03	0.04	0.06	0.08	0.11
TOTAL	2.85	3.30	3.66	3.98	4.31	4.21

NMVOC emissions for pharmaceuticals, adhesives and filling agents, which are not included in the calculation model for household products are calculated using emission factors presented in Guidebook 2019.

Calculation principles in the model

The model follows the actual domestic sales of different products. Only products identified as sources of NMVOC emissions are included in the model as presented in Table 4.52. The following groups are currently not covered by the model due to lack of sales data: pharmaceuticals, office products, Do It Yourself (DIY) products, adhesives and sealants.

Table 4.52 NMVOC containing products froups and data collection basis in the domestic sources' NMVOC emissions model

Product category	NMVOC containing products	Data collection basis
Cosmetics and toiletries	hygiene, hair care (4 subgroups), soap (1) and parfume products (2 subgroups).	money spent
Househould cleaning products	glass surface cleaning agents (3 subgroups), airrefresheners, general cleansing agents (2 subgroups)	money spent
Car care products	car wax, whindscreen washing agents (2 subgroups), de-icing, degreasing and engine detergents	sales volumes
Other products	lighter fluids for grilling and repellents.	sales volumes

Information on money spent on products was received from the Finnish Cosmetic, Toiletry and Detergent Association and this was divided between each of the subgroups based on expert estimates. NMVOC emissions were estimated based on sales volumes in litres derived from average product specific prices (€/I) and the density of the product, as well as from the contents and volatilization rates of NMVOC compounds typically contained in the products.

Sales volumes in litres was derived from information received from some selected large retail companies and then scaled according to the sales shares to the whole country taking into account the specific sales profiles of the different types of retailers. NMVOC emissions were estimated based on sales volumes and the contents and volatilization rates of NMVOC compounds typically present in the products.

The emissions reported in the NFR tables for the intermediate years of those provided by the model, project are extrapolated. A method to calculate the emissions using GDP or population data will be developed for these years. The emission estimates are planned to be updated every 5 years. In the 2019 submission the same emission estimate was used for the year 2015 as for 2014.

A detailed documentation of the model with information on data sources, assumptions made and detailed calculations is presented in Rantanen et al., 2015.

EMEP/EEA Guidebook 2019 Tier 1 method has been used for pharmaceuticals, adhesives and filling agents, which are not included in the calculation model for household products. Population is used as activity data (Table 4.53).

Table 4.53. Population 1990-2019 (Statistics Finland, 2021)

Year	Population
1990	4998478
1991	5029002
1992	5054982
1993	5077912
1994	5098754
1995	5116826
1996	5132320
1997	5147349
1998	5159646
1999	5171302
2000	5181115
2001	5194901
2002	5206295
2003	5219732
2004	5236611

Year	Population
2005	5255580
2006	5276955
2007	5300484
2008	5326314
2009	5351427
2010	5375276
2011	5401267
2012	5426674
2013	5451270
2014	5471753
2015	5487308
2016	5503297
2017	5513130
2018	5517919
2019	5525292

In Finland the use of paint/varnish removers is included in the NMVOC emissions from paint application. The inventory of paint application is carried out by the Association of Finnish Paint Industry and Printing Ink Companies and includes both manufactured and imported removers and thinners. There has been a change in the person carrying out this inventory and a new description of the inventory will be included in the 2020 IIR. It is worth to note that due to the great depression in the beginning of the 1990's (see IIR General partA) the large mass of small workshops producing doors, windows etc. carpenter products and engineering products were closed down and never reopened and these products are now imported.

Mercury emissions from fluorescent tubes

Mercury emissions from disposal of fluorescent tubes are included under 1A1a and cannot be reported separately. The disposed tubes are collected and treated at a hazardous waste incineration plant with energy recover, thus the plant falling under 1A1a. The emissions are reported by the plant according the monitoring requirements of the plant's environmental permit.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to the assessment of magnitude and trends have been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2016

The calculation of NMVOC emissions from domestic solvent use was revised for the whole time series. The earlier estimates for the use of personal care, adhesive and sealant, household cleaning and car care products were prepared by the Finnish Cosmetic, Toiletry and Detergent Association at the beginning of the 2000's. The aggregate estimate of 4.66 kt/a covering all these sources was based on a questionnaire sent to members of the Association and took into account the different NMVOC compounds and their volatilation rates from the different product types. The estimate was used as a constant value for all years and thus did not take into account product development or changes in the use of products or in the legislation. (Finnish Cosmetics, 2002). During summer 2015 a project was carried out at SYKE to get more accurate information of the level and trend of NMVOC emisisons from domestic sourses.

2019

- Inclusion of mercury emissions from fluorescen tubes using a Tier 1 methodology. The emissions from disposal are included as explained above.

2020

- Inclusion of NMVOC emissions from pharmaceuticals, adhesives and filling agents using a Tier 1 methodology (Guidebook 2019) due the 2019 NECD Review.

2021

- For 1988-1989 the emissions in categories 2D3a, 2D3b, 2D3d, 2D3e, 2D3f, 2D3g, 2D3h and 2D3i were split from the sum of these categories earlier reported under 2D3d using the relation of these categories in years 1990-1994 as a surrogant.

Source-specific planned improvements

In the next years when resources will be approved for the work

- New data collection on NMVOC containing products' sales.
- Fine-tuning of the NMVOC model to reflect changes in legislation and product development and to calculate the emissions using GDP or population for years which are not covered by data collection.

Road paving with asphalt (2D3b)

Changes in chapter
February 2021 KS & JMP

Source Category description

SNAP 040611		
Not a key category for any pollutants		Asphalt roofing Asphalt mixing plants
Emissions	Tier	Source of emissions
TSP, PM ₁₀ , PM _{2.5} , BC, NMVOC, PCDD/F	T3/T2	calculated
PCB		PCB emissions are not estimated into air, only through solubility to water and soil
PAH-4		Coal tar is not used in road work in Finland (impact the reuse of asphalt material) and therefore PAH emissions are estimated not to occur in the mainlad of Finland. However, in the Aland Islands (as in Sweden) coal tar has been used since 1973. The emissions from Aland are not currently included in the inventory.

Approximately twenty asphalt mixing plants have an environmental permit and report their emissions according to their monitoring requirements. The majority of asphalt mixing plants does not fall under IED but are regulated by the local environmental authorities and are part of the notification procedure, i.e. new plants are required to report to a register. The register covers technical information (e.g. construction of the plant, stack height, process techniques, storage of liquids).

Emission trend

Road paving with asphalt is a minor source of NMVOC, particle and PCDD/F. The emissions from road paving with asphalt vary according to the production volumes over the years.

Emissions from bitumen oils, bitumen emulsions and industry bitumens are allocated under NFR 2D3c Asphalt roofing, while road bitumens and road bitumen solutions are allocated under NFR 2D3b Road paving with asphalt.

Process emissions from asphalt mixing plants are reported under NFR 2D3b and fuel combustion related emissions under NFR 1A2gviii.

The emission trends are presented in Figure 4.29

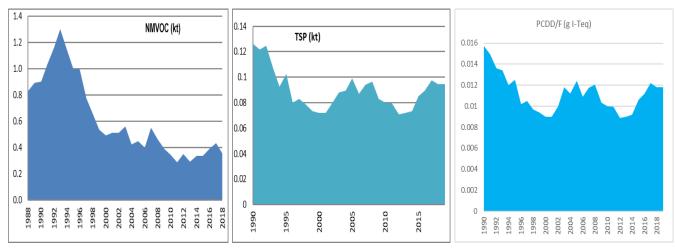


Figure 4.29 Emission trends in road paving

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.54.

Table 4.54 Contribution of road paving with asphalt (NFR 2D3b) to total emissions in 2019.

Pollutant	Emissions from road paving with asphalt	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	0.263	84.522	Gg	0.3	0
PM2.5	0.065	16.622	Gg	0.	0
PM10	0.071	30.034	Gg	0.2	0
TSP	0.094	44.952	Gg	0.2	0
BC	0.004	3.848	Gg	<0.1	0
PCDD/ F	0.012	12.132	g I-Teq	<0.1	0

Methodological issues

Emissions are mainly reported by the plants according to the monitoring requirements in their environmental permits. When no plant specific data is available, the emissions have been calculated on basis of plant specificasphalt production.

Particles and black carbon

Particle emissions are calculated using the following emission factors; 0,000016 t/t (TSP), 0,000012 t/t (PM₁₀) and 0,000011t/t (PM_{2.5}). These emission factors by TNO (2002) are considered to reflect better national circumstances than the default EF in the EMEP/EEA Emission Inventory Guidebook 2019. The unit of the method presented in the Guidebook is likely incorrect (0.014 t/t). Black carbon emissions are calcuted using the emission factor 5.7 % of PM_{2.5} (Guidebook2019, EEA, 2019). Activity data used in the calculation is presented in Table 4.55.The activity data has been updated for years 2016-2018 in 2021 submission.

Table 4.55 Amount of produced asphalt (1990-2019), Confederation of Finnish Construction Industries RT Infra Division (Infra ry, 2021)

Year	Amount of used asphalt (1000 t)	Year	Amount of used asphalt (1000 t)
1990	7900	2010	5 000
1991	7600	2011	4 965
1992	7800	2012	4 450
1993	6700	2013	4 500
1994	5800	2014	4 600
1995	6400	2015	5 300
1996	5000	2016	5 600
1997	5200	2017	6 100
1998	4900	2018	5 900
1999	4600	2019	5 900
2000	4500		

2001	4500	
2002	5000	
2003	5 500	
2004	5 600	
2005	6 200	
2006	5 500	
2007	5 880	
2008	6 050	
2009	5 176	

POP emissions

PCDD/F emissions are based on asphalt production, which is publicly available in industrial statistics (Statistics Finland). The emission factor for asphalt production is 2 ng I-TEQ/t (UNEP 1999). There is no method provided in the Guidebook 2019. The emissions are presented in Table 4.56.

NMVOCs

For NMVOC emissions from road paving with aphalt (NFR 2D3b) and asphalt roofing (NFR 2D3c) are calculated using the same method based on bitumen use, which is confidential. Data on bitumen use is received from the domestic bitumen producer (Nynas Oy, previously Fortum Oil and Gas Ltd., Ref. Blomberg, 2006, Remes. H., 2020). This bitumen use data is divided into five groups: road bitumens, road bitumen solutions, bitumen oils, bitumen emulsions and industry bitumens. For these VOC fractions for the different years are provided by Nynäs Oy (Table 4.55). To this, the imported amount of bitumen from customs statistics database ULJAS is added and divided in corresponding five groups as an expert estimation at SYKE.

VOC fractions from bitumen are measured annually by the producer. Bitumen emulsions are applied cold, they are water-based and do not contain solvents. For bitumen solutions and oils the NMVOC emission rate corresponds to the actual solvent content. The NMVOC rate of road bitumen and industrial bitumens is determined using the heating weight loss in the thin layer test (5 hours, 163 °C). Development of NMVOC fractions is presented in Table 4.56.

Table 4.56 NMVOC fractions of bitumens (Nynäs Oy).

Year	Production group	VOC fraction %	fraction % Year Production gro		VOC fraction %
	Road bitumen	0-0.1		Road bitumen	0-0.1
	Road bitumen solutions	10-50		Road bitumen solutions	10-50
1988-	Bitumen oils	~10	2004-2010	Bitumen oils	~10
1990	Bitumen emulsions	0*	2004-2010	Bitumen emulsions*	0
	Industry bitumen solutions	40-60		Industry bitumens	0.1
	Road bitumen	0-0.1		Road bitumen	0-0.1
	Road bitumen solutions	10-50		Road bitumen solutions	10-50
1991-	Bitumen oils	~10	2012 onwards	Bitumen oils	~5**
2003	Bitumen emulsions*	0		Bitumen emulsions*	0
2003	Industry bitumen	0.1		Industry bitumens	0.1
	Industry bitumen solutions	30-65			

^{*}bitumen emulsions are applied cold, they are water-based and do not contain solvents

Activity data

Activity data used in the inventory for 2006--2019 is based on the sum of production and import data, which are confidential, and cannot be published. Activity data for the years 1990-2005 is based on confidential production data, because for these years the import has been estimated negligible (Blomberg, 2006).

^{**}new biobased degrable solvent

Table 4.57 Emissions from road paving with asphalt

Year	TSP (t)	PM10 (t)	PM2,5 (t)	BC (t)	NMVOC (t)	PCDD/Fs (g-ITeq)
1990	126.4	94.8	86.9	5.0	900	0.016
1991	121.6	91.2	83.6	4.8	1035	0.015
1992	124.8	93.6	85.8	4.9	1162	0.014
1993	107.2	80.4	73.7	4.2	1299	0.013
1994	92.8	69.6	63.8	3.6	1147	0.012
1995	102.4	76.8	70.4	4.0	995	0.013
1996	80.0	60.0	55.0	3.1	995	0.010
1997	83.2	62.4	57.2	3.3	775	0.011
1998	78.4	58.8	53.9	3.1	653	0.010
1999	73.6	55.2	50.6	2.9	536	0.009
2000	72.0	54.0	49.5	2.8	491	0.009
2001	72.0	54.0	49.5	2.8	514	0.009
2002	80.0	60.0	55.0	3.1	537	0.010
2003	88.0	66.0	60.5	3.4	560	0.012
2004	89.7	67.3	61.7	3.5	426	0.011
2005	99.2	74.4	68.2	3.9	451	0.012
2006	87.3	65.5	60.0	3.4	399	0.011
2007	94.1	70.6	64.7	3.7	550	0.012
2008	96.4	72.3	66.3	3.8	466	0.012
2009	82.8	62.1	56.9	3.2	393	0.010
2010	80.0	60.0	55.0	3.1	347	0.010
2011	79.4	59.6	54.6	3.1	289	0.010
2012	71.2	53.4	49.0	2.8	353	0.009
2013	72.0	54.0	49.5	2.8	294	0.009
2014	73.6	55.2	50.6	2.9	339	0.009
2015	84.8	63.6	58.3	3.3	337	0.011
2016	89.6	67.2	61.6	3.5	391	0.011
2017	97.6	73.2	67.1	3.8	437	0.012
2018	94.4	70.8	64.9	3.7	359	0.012
2019	94.4	70.8	64.9	3.7	263	0.012

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to the assessment of magnitude and trends have been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2018

- The allocation of activities has been harmonized due to the recalculation of point source data. 2020

- Use of Guidebook 2019 methods for particles
- NMVOC emissions from 2017 were updated.

2021

- For 1998-1989 the emissions were split into categories 2D3a, 2D3b, 2D3d, 2D3e, 2D3f, 2D3g, 2D3h and 2D3i from the sum of these categories earlier reported under 2D3d using the relation of these categories in years 1990-1994 as a surrogant.
- Activity data for particle calculation have been updated for years 2016-2018.

Source-specific planned improvements

None

Changes in chapter
February 2021 KS JMP

Source category description

SNAP 040610		Roof covering with asphalt materials
Key category for NMVOC		Emissions from the use of bitumen oils, bitumen emulsions and industry bitumens are reported under this category,
Emissions	tier	Source of emissions
NMVOC	T3	Calculated

Emission trend

Asphalt roofing is a minor source of NMVOC emissions and the emissions vary according to the production volumes over the years. Emission trends are presented in Figure 4.30.

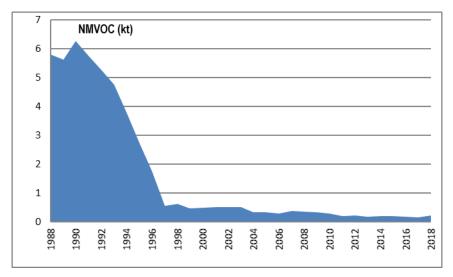


Figure 4.30 NMVOC emissions from asphalt roofing

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.58.

Table 4.58 Contribution of asphalt roofing (NFR 2D3c) to total emissions in 2019.

Pollutant	Emissions from asphalt roofing	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	0.181	84.522	Gg	0.2	0

Methodological issues

NMVOC (Key category for NMVOC, T3)

The same calculation method is used for road paving with aphalt (NFR 2D3b) and asphalt roofing (NFR 2D3c). NMVOC emissions asphalt roofing are calculated based on data from the domestic bitumen producer (Nynas Oy, previously Fortum Oil and Gas Ltd., Ref. Blomberg, 2006, Remes., H. 2019) and the imported amount of bitumen (information from customs statistics database ULJAS).

The data presented in Table 4.56 of the previous chapter represent NMVOC emission rates from the use of bitumen products, not from manufacture of products. The emitted NMVOCs are based on annual meaurements by the producer.

The domestic production data is divided between the different product groups and for each group the specific NMVOC content is determined. The product groups are road bitumes, road bitumen solution, bitumen oils, bitumen emulsions and industry bitumens. Emissions from bitumen oils, bitumen emulsions and industry bitumens are allocated under NFR 2D3c Asphalt roofing, while road bitumens and road bitumen solutions are allocated under NFR 2D3b Road paving with asphalt. The division of the activity data between the product groups is based on information from Customs statistics and on expert estimation at SYKE as also for the imported amount of bitumen.

Activity data used in the inventory for the years 2006-2019 is based on the sum of production and import data, which is confidential, and cannot be published. Activity data for 1990-2005 is based on only confidential production data, because for these years import has been estimated (Blomberg, 2006) negligible.

NMVOC emissions from asphalt roofing are presented in Table 4.59.

Table 4.59 NMVOC emissions from other asphalt roofing

Year	NMVOC (t)	Year	NMVOC (t)
1990	6260	2010	283
1991	5758	2011	191
1992	5257	2012	209
1993	4755	2013	158
1994	3757	2014	181
1995	2748	2015	197
1996	1742	2016	174
1997	549	2017	157
1998	614	2018	202
1999	461	2019	181
2000	489		
2001	494		
2002	498		
2003	503		
2004	332		
2005	324		
2006	283		
2007	362		
2008	349		
2009	321		

Particles

Particle emissions are reported by the plants according to the monitoring requirements of the monitoring programme included in their environmental permits. Process emissions do not occur because the dust emitted is removed and treated through a specifically designed equipment (dust filters with continuous operation control) and are monitored through continuous mesurements. All particle emissions from asphalt roofing result from the use of LFO and terefore they are reported NA and allocated under NFR 1A2f.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to the assessment of the magnitude and trends have been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

 Particle emissions, which are very low, around 0.0001 kt/a, and earlier reported as NA were included in the inventory due to the recommendation of the NECD 2017 Review.

2019

 To notation keys for all particles for all years were changed back to NA from the accidentially inserted IE during the recalculation of the time series (NECD Review 2018).

2020

NMVOC emissions from 2017 were updated.

Source-specific planned improvements

None.

4.5 Solvent and Other Product Use

Coating applications (NFR 2D3d)

Changes in chapter
February 2021 KS JMP

Source category description

According EMEP/EEA Guidebook 2019 NFR 2D3d coating applications consists of decorative, industrial and other coating applications. Industrial activities in Finland falling under NFR 2D3d Coating applications are presented in Table 4.60.

Table 4.60 Activities and emissions reported from coating applications.

Source	Description	Emissions reported
Decorative coating application	Non-industrial paint application in construction and buildings (SNAP 060103) and domestic use (SNAP 060104)	NMVOC
Industial coating application	Paint application in car repairing (SNAP 060102), manufacturing of automobiles (SNAP 060101), coil coating (SNAP 060105), boat building (SNAP 060106), painting of wood (SNAP 060107) and other industrial coating (SNAP 060108).	NMVOC, TSP, PM ₁₀ , PM _{2.5}
Other coating applications	Road marking paints, non-decorative floor paints. (SNAP 060109) Usually other coating applications are reported under industrial coating applications because the allcoation between sectors is difficult.	NMVOC

The allocation of emissions between decorative and industrial coating apllications in the Finnish inventory is not consistent over the years. The division between decorative and industrial coating has been possible since 1990. Emissions from years 1990-2000 are presented on a more aggregated level.

NMVOC emissions for other coating applications are included under decorative and industrial coating as it is not possible to calculate these separately based on the current activity data detail level. Attempts are made to improve activity data collection in the next inventory rounds in order to receive more detailed information for other coating applications.

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.61.

Table 4.61 Contribution of coating applications (NFR 2D3d) to total emissions in 2019.

Pollutant	Emissions from coating applications	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	7.363	84.522	Gg	14.2	17
PM2.5	<0.001	16.622	Gg	<0.1	0
PM10	0.001	30.034	Gg	<0.1	0
TSP	0.002	44.952	Gg	<0.1	100

In 2021 submission coating applications is a key category in NMVOC emissions.

Emission trends

NMVOC emissions from paint application are presented in Figure 4.31 and in Table 4.61. In Table 4.61 the same value of voc content in products has been used since 2014 due the lack of information. The allocation of emissions from years 1988 and 1989 is not consistent. NMVOC emission values are reported under NFR 2D3d but these reported values contain emissions from whole solvent use sector.

The decrease in emissions in the beginning of the 1990's is due to the recession and fall in the consumption of paints. The consumption of paints started to grow again in 1994. Despite of the growth, NMVOC emissions have been decreasing due to lower content of volatile organic compounds in the various paints and coatings.

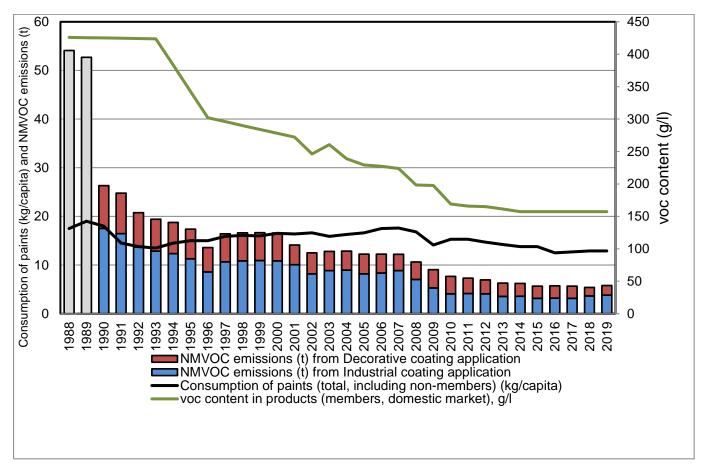


Figure 4.31 NMVOC emissions from paint application, VOC content and consumption of paints.

Table 4.62 NMVOC emissions reported under NFR 2D3d coating applications (Gg).

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
decorative	IE ¹	IE ¹	8.8	8.3	7.0	6.6	6.4	6.1	5.0	5.8	5.8
industrial	54.1	52.7	17.5	16.5	13.7	12.9	12.3	11.3	8.6	10.6	10.9
other coating	IE ¹										
	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
decorative	5.7	5.7	4.0	4.3	4.0	3.9	4.0	3.9	3.3	3.6	3.5
industrial	10.9	10.9	10.0	8.2	8.8	9.0	8.2	8.3	8.9	7.0	5.3
other coating	IE ¹	0.01									
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	
decorative	3.3	2.9	2.7	2.7	2.6	2.5	2.5	2.5	1.7	2.0	
industrial	4.1	4.1	4.1	3.6	3.6	3.2	3.2	3.2	3.6	3.8	
other coating	0.03	0.02	0.01	NA							

¹Included in industrial coating applications

Methodological issues

The paint sales and product statistics are divided into decorative (DIY/architectural) and industrial sectors.

Under decorative coating application SNAP categories 060103 and 060104 are reported.

It is not possible to separate emissions falling under industrial coating applications (SNAP 060101, 060102, 060105, 060106, 060107 and 060108) and other coating application (SNAP 060109) due to lack of detailed information. Part of the emissions falling under these sources is interconnected with emission data reported by the plants, which have reporting obligations only for their total emissions and not at activity level. Information sources for industrial and other coating applications are presented in Table 4.63. Paint application on *Wood* and *Other coating application* included in the table are included in industrial paint coating SNAP 060100 and cannot be reported separately.

Table 4.63 Information sources for the industrial and other coating applications

Sector	Paint application in	Reference			
	Manufacture of automobiles	Reported by operators, questionnaire to operators and Association of Finnish Paint Industry			
	Coil coating	Reported by operators, questionnaire to operators and Association of Finnish Paint Industry			
Industrial coating application	Car repair	Reported by operators, questionnaire to operators and Association of Finnish Paint Industry			
	Wood	Questionnaire to operators and Association of Finnish Paint Industry			
	Other industrial paint application	Reported by operators, questionnaire to operators and Association of Finnish Paint Industry			
Other coating application	Questionnaire to operators and the Association of Finnish Paint Industry (road marking paints)				

As presented in Table 4.62 NMVOC emissions from industrial and other coating applications are reported by operators, from questionnaire to operators or estimated by Association of Finnish Paint Industry (VTY). Emissions from decorative coating application are from questionnaires and from VTY's estimates. The diviation between decorative and industrial coating application has been made since 2001 emissions reported in 2003 submission.

Emissions from application of paints of VTY members

Emissions from the application of paints produced by companies that are members of the Association of Finnish Paint Industry (VTY), are estimated by VTY, which compiles national statistics on the annual sales of paint products of its members. It covers about 90% of the paints produced in Finland. In the calculation of 2019 emissions, 97% of emissions are based on estimates by VTY.

Basis of calculation by VTY for the members

NMVOC emissions from decorative and industrial coating applications are calculated on the basis of the use volumes and solvent content of paints that develop over the years. The calculation is based on the actual formulations and the VOC content of raw materials used in the different formulations annually and on daily sales volumes of each product collected in each company's data system.

According to information from 2003 (Riala, 2003) 75% of paints used for construction and 90% of paints used for indoor painting were waterborne already then. According to the statistics collected by the members of the Association of Finnish Paint Industry the share of waterborne paints has been increased especially in the sector of industrial coatings since 2001.

For the baseline year 1988 for NMVOC emissions, the statistics of water and solvent based paints were further divided into subgroups of several types of products and various types of surfaces to be painted, such as "waterborne decorative indoor paints" or "solvent borne decorative indoor paints". For each of these subgroups the average NMVOC content and the average density have been estimated by the expert group set by the Member Companies of the Association of Finnish Paint Industry (VTY).

Emissions from application of paints of non-VTY members

VTY members produce about 90% of paints in Finland. In the calculation of 2019 emissions 97% of emissions are based on estimates by VTY. Emissions from the application of paints of those paint manufacturers that are not members of VTY were in 2019 3% of total emissions. The calculation is based on data acquired from annual questionnaires sent out by Finnish Environment Institute SYKE (since the 2003 submission). Information on paint production and sales of the companies as well as the likely use of paints (decorative/industrial) are collected from the companies. The questionnaire was earlier based on a mailed questionnaire and from 2011 an e-mail inquiry has been used, in addition. The response rate to the questionnaire varies from year to year. The collection of emission data for 2019 was carried out sending out questionnaires (excel-sheet) by e-mail to 5 companies, out of which 4 responded. All of the responses were provided in the excel sheet. In 2005 the questionnaires were sent by mail to 14 companies, out of which 12 responded. The number of companies has decreased over the years, in 2008 questionnaries were send to 10 companies while in 2011 only for 6 companies.

Basis of calculation by SYKE for non-VTY members

Information on the volume of paints/solvents used and their content of volatile organic compounds by CAS number and concentration are used in the calculation. The default volatility rate of 100% is used for the VOC compounds unless the operators provide a more accurate rate in their response. The questionnaire includes guidance for the operators if they choose to calculate the VOC emissions themselves. In any case, they report the details needed for the national inventory.

NMVOC emissions from coating applications are presented in Table 4.64.

Year	NMVOC (kt)	Year	NMVOC (kt)
1990	27.500	2010	9.170
1991	26.000	2011	8.719
1992	22.000	2012	8.181
1993	20.500	2013	7.512
1994	20.000	2014	7.270
1995	19.000	2015	6.772
1996	15.630	2016	6.803
1997	18.000	2017	6.803
1998	18.000	2018	6.538
1999	17.900	2019	7.363
2000	17.900		
2001	15.586		
2002	14.130		
2003	14.581		
2004	14.495		

Table 4.64 NMVOC emissions from coating applications

2005	14.007	
2006	14.517	
2007	14.633	
2008	12.559	
2009	10.576	

Particle emissions

Particulate matter emissions (TSP, PM_{10} and $PM_{2.5}$) from industrial coating application are based on TSP data reported by the plants which are available in YLVA. Particle emissions are mainly generated during spray painting for example in a shipyard. PM_{10} and $PM_{2.5}$ emissions have been calculated from the TSP emissions based on national fraction factors 80% for PM10 and 50% for PM2.5 (Karvosenoja, 2002). In 2018 particle emission from paint applications were less than 0.1 % of total emissions.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process 2018-2019

- The differences in NMVOC and particle emissions between the submissions in 2017 and 2018 was due the reallocation of emissions, which were corrected.

2020

- During the preparation of the 2019 submission, incorrect record of data reported by the plants in the YLVA system was identified and is corrected to the 2020 submission.

2021

- For 1988-1989 the emissions were split into categories 2D3a, 2D3b, 2D3d, 2D3e, 2D3f, 2D3g, 2D3h and 2D3i from the sum of these categories earlier reported under 2D3d using the relation of these categories in years 1990-1994 as a surrogant.

Source-specific planned improvements

In the next 5 years

- Improving the consistency of the allocation of emissions between decorative and industrial coating applications for the years 1990-2000 is planned to be carried out according to the division of earlier shares
- Separation of emissions between other coating applications and decorative and industrial coating

Degreasing (NFR 2D3e)

Changes in chapter
February 2021 KS & JMP

Source category description

There is no production of chlorinated organic solvents in Finland, all the used solvents are imported.

Degreasing and dry cleaning is a source of NMVOC emissions. Chlorinated organic solvents are used in the metal and electronic industries to clean surfaces of different components and in dry cleaners. Activities listed in Table 4.65 are included in the inventory.

Table 4.65 Information sources for the NMVOC inventory under NFR 2D3e.

Product group	Activity where used	Reference
	Metal degreasing SNAP 060201	Customs statistics and expert estimate
Chlorinated solvents in products	Other industrial cleaning SNAP 060204	Customs statistics and expert estimate
products	Electronic components manufacturing SNAP 060203	Customs statistics and expert estimate

Degreasing in the Finnish inventory includes part of the emissions from Dry cleaning (NFR 2D3f) which can not currently be reported separately.

Emission trend

Emission trends are presented in Figure 4.32. NH₃ emissions from electronic components manufacturing was subject to many changes in the production activities which are reflected in the emission trend. Particle emissions are reported just by few companies that have gone out of business around 2011-12.

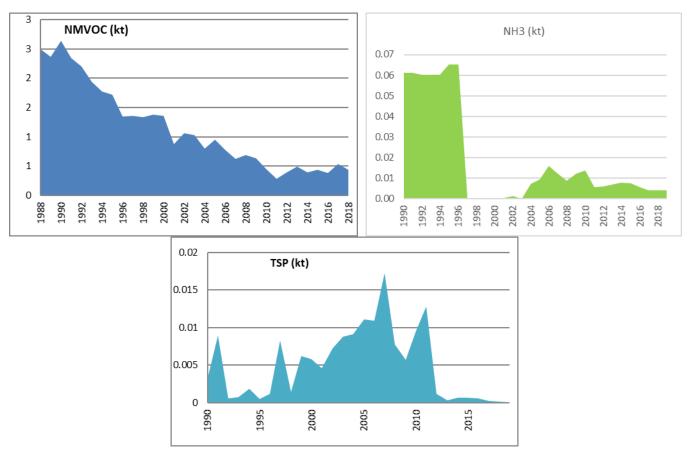


Figure 4.32 Emission trends in 2D3e

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.66.

Table 4.66 Contribution of Degreasing (NFR 2D3e) to total emissions in 2019.

Pollutant	Emissions from degreasing	Total emissions	Unit	Share of total emissions %	% reported by plants
NMVOC	0.521	84.522	Gg	0.6	5.6
NH ₃	0.004	31.593	Gg	<0.1	0
PM2.5*	<0.001	16.622	Gg	<0.1	0
PM10*	<0.001	30.034	Gg	<0.1	0
TSP*	<0.001	44.952	Gg	<0.1	100

^{*}there may be incorrect allocation of particle emissions, will be checked for the next submission

Methodological issues

NMVOC

Emissions are mainly reported by the plants according to the monitoring requirements in the environmental permits.

When no plant specific data is available emissions has been calculated based on import statistics of pure chlorinated solvents and products containing chlorinated organic solvents and the volume of solvent waste processed in the hazardous waste treatment plants.

There is no production of chlorinated organic solvents in Finland. All the solvents used are imported and the amounts are obtainable from the Customs Statistics (ULJAS), but the split of their use between metal degreasing and dry cleaning is not available resulting in aggregated reporting.

Estimation of emissions from degreasing is based on the assumption that all purchased chemicals are used during the year of import. Activity data used in the calculation is presented in Table 4.66. The emission factor 0.7 kg/kg used in the calculation is an expert estimate by VTT Technical Research Centre of Finland since 2001 (YM, 1992). For the years 1990-2000 it is not possible to split the solvent volumes between solvents imported or solvents in imported products, so the solvent use is presented as a sum *and it is based on an expert estimate*. (SYKE, 2002)

Calculated NMVOC emissions from degreasing are presented in Table 4.67.

Table 4.67 Activity data for NMVOC emissions under NFR 2D3e (* sum, based on expert estimate)

Year	Chlorinated organic solvents import (t) from ULIAS	Chlorinated organic solvents import in products (t) Expert estimate	Chlorinated organic solvents processed in the waste treatment plants (expert estimate) (t)
1990	2600*		
1991	2300*		
1992	2100*		
1993	1800*		
1994	1700*		
1995	1500*		
1996	1300*		
1997	1300*		
1998	1300*		
1999	1200*		
2000	1200*		
2001	1094	100	160
2002	1421	150	160
2003	1407	150	140
2004	1110	150	140
2005	1317	150	140
2006	1070	150	140
2007	855	150	140
2008	936	150	140
2009	863	150	140
2010	595	150	140
2011	371	150	140
2012	529	150	140
2013	680	150	140
2014	545	150	140
2015	603	150	140
2016	524	150	140
2017	702	150	140
2018	576	150	140
2019	725	150	140

Table 4.68 NMVOC emissions from degreasing (use of chlorinated organic solvents)

Year	NMVOC (kt)	Year	NMVOC (kt)
1990	2.638	2010	0.446
1991	2.340	2011	0.283
1992	2.207	2012	0.392
1993	1.944	2013	0.494
1994	1.771	2014	0.397
1995	1.717	2015	0.438
1996	1.343	2016	0.382
1997	1.353	2017	0.531
1998	1.336	2018	0.439
1999	1.378	2019	0.521
2000	1.360		
2001	0.874		
2002	1.063		
2003	1.031		
2004	0.797		
2005	0.954		
2006	0.782		
2007	0.629		
2008	0.685		
2009	0.636		

NH₃

Ammonia emissions are repoted by plants according to the monitoring requirements of the monitoring programme included in their environmental permits. These emissions originate from electronic components manufacturing.

Particles

Particle emissions are reported by the plants according to the monitoring requirements of the monitoring programme included in their environmental permits. PM_{10} and $PM_{2.5}$ emissions have been calculated from the TSP emissions based on fraction factors of 80 % for PM_{10} and of 50% for $PM_{2.5}$ (Karvosenoja, 2002).

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to the assessment of the magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2021

- For 1988-1989 the emissions were split into categories 2D3a, 2D3b, 2D3d, 2D3e, 2D3f, 2D3g, 2D3h and 2D3i from the sum of these categories earlier reported under 2D3d using the relation of these categories in years 1990-1994 as a surrogant.

Source-specific planned improvements

• Allocation of particle emissions will be studied further.

Changes in cha	pter
January 2020	KS & JMP

NMVOC emissions from dry cleaning are included in the emissions calculated from the use of chlorinated organic solvents as presented in the previous chapter. In the inventory they are allocated under Degreasing (NFR 2D3e). The emissions cannot be reported separately due to missing tools to estimate the share of solvents used for dry cleaning.

Chemical products (NFR 2D3g)

Changes in chapter
February 2021 KS & JMP

Source category description

Information on industrial activities falling under NFR 2D3g Chemical Products is presented in Table 4.68

Table 4.68 Activities and emissions reported under NFR 2D3g.

Activities included	Emissions
Pharmaceutical industry SNAP 060306	
Textile and leather industry SNAP 060312 and 060313	NMVOC, TSP,
Plastics manufacturing and handling of polymer plastics (e.g. polyester, polyvinylchloride, polystyrene foam	PM ₁₀ , PM _{2.5} ,
processing) SNAP 060301, 060302, 060303 and 060304	NH _{3,} SOx, Cd,
Rubber conversion SNAP 060305	As, Cr, Ni
Manufacture of paints, inks and glues SNAP 060307, 060308 and 060309	
Adhesive, magnetic tapes, films and photographs manufacturing SNAP 060311	
Asphalt blowing – not estimated (Guidebook EF erroneous)	

In 2021 submission chemical products is a key category in NMVOC emissions, which are calculated with T2 methods.

Emission trends

NFR category Chemical products is a minor source of NMVOC emissions, the share of total emissions in NH_3 and particles is less than 0.1 %. Since the 2011 inventory, CO emissions are allocated under NFR 1A2d and 1A2c.

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.69

Table 4.69 Contribution of chemical products (NFR 2D3g) to total emissions in 2019.

Pollutant	Emissions from chemical products	Total emissions	Unit	Share of total	% reported by the
				emissions %	plants
NMVOC	1.771	84.522	Gg	2.1	72.8
SOx	<0.001	28.937	Gg	<0.1	100
NH3	0.004	31.593	Gg	<0.1	22.8
PM2.5	0.002	16.622	Gg	<0.1	0
PM10	0.003	30.034	Gg	<0.1	0
TSP	0.003	44.952	Gg	<0.1	100

Heavy metals reported in 1988-2004 originated from asphalt blowing, which has not occurred thereafter.

Emission trends are presented in Figure 4.33

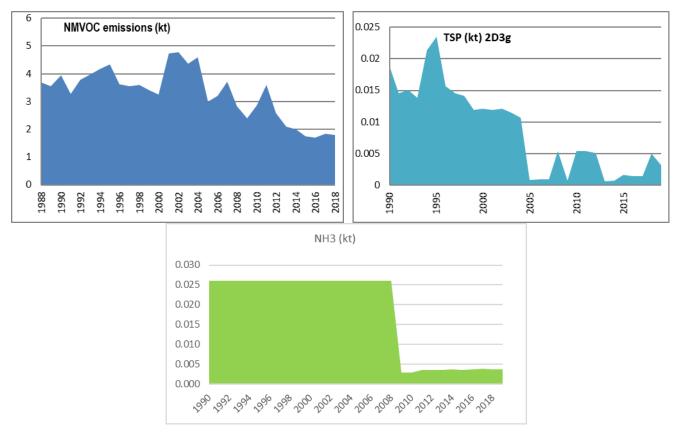


Figure 4.33 Emission trends in Chemical products

Methodological issues

Asphalt blowing

Asphalt blowing has occurred in Finland in the years 1988-2004. Finland only recognized the existence of the source after the NECD Review 2018 and then made preliminary estimates for the related PAH emissions. However, in autumn 2018 the TERT Secretary informed that the Tier 2 EFs in the Guidebook (Tables 3-9 and 3-10 of 2.D.3.g Chemical products) are incorrect. We therefore report the emissions as NA and include the emissions only when a correct EF is provided in the Guidebook.

Emissions reported are heavy metals and NMVOCs which are calculated using the Guidebook.

Other sources under 2D3q

Emissions are mainly reported by the plants according to the monitoring requirements in the environmental permits. When no plant specific data is available emissions has been calculated.

Air pollutant emissions from chemical products depend on the use volumes of solvents. The allocation of activities has also been changed over the years and is consistent in the time series. Methodologies used in the calculation of solvent use in the different chemical products manufacture and processing are presented in Table 4.70. For many of the activities allocated under this category, the emissions include only data reported by the plants.

Table 4.70 Information sources for the NMVOC inventory under NFR 2D3g.

Activity	Methodology
Polyester processing	Reported by operators + questionnaire to operators
Polyvinylchloride processing	Reported by operators
Polyurethane foam processing	Reported by operators
Polystyrene foam processing	Reported by operators
Rubber processing	Reported by operators
Pharmaceutical products manufacturing	Reported by operators + questionnaire to operators
Paints manufacturing	Reported by operators + questionnaire to operators
Inks manufacturing	Reported by operators
Glues manufacturing	Reported by operators
Adhesive, magnetic tapes, films &	Reported by operators
Textile finishing	Reported by operators + questionnaire to operators
Leather tanning	Reported by operators + questionnaire to operators
Other	Reported by operators + questionnaire to operators
Asphalt blowing	Not estimated (see above)

NMVOC emissions reported under Chemical Products include emission data reported by the plants and calculated emissions based on information from questionnaires to small and medium sized companies in the paint manufacturing, plastic and leather industries, which are not obligated to report their emissions to the environmental authorities.

NMVOC emissions, their sources and the number of companies allocated to this sector are presented in Table 4.71 to illustrate the contribution of the questionnaire to the total emissions of this sector.

Table 4.71 The contribution of responses received to the questionnaire sent to companies in summer 2019 for the inventory of 2017 emissions, to the total emissions of the sector 2D3g.

Sector	Year	NMVOC emissions (t)	Source of information	Number of companies
Pharmaceutical industry	2019	202	VAHTI 100%	10 - 20
Plastic industry (incl. polyester, polyvinylchloride, polystyrene foam processing and other)	2019	1 390	VAHTI 57% Questionnaire 43%	10 - 20 50 -100
Textile and leather industry	2019	0.00	Questionnaire 100%	
Rubber conversion	2019	Incl. in plastic industry due to confidentiality	VAHTI 100%	less than 10
Manufacture of paints, inks and glues	2019	179	VAHTI 99.5% Questionnaire 1%	10 - 20 less than 10
Total NMVOC emissions from NFR 2D3g	2019	1771		

Plastic industries

Emissions are calculated on the basis of data from replies to the questionnaires¹⁰. Information on the volume of solvent containing substances used and their content of volatile organic compounds by CAS number and concentration are used in the calculation. The default volatility rate of 100% is used for the VOC compounds unless the operators provide a more accurate rate in their response.

For the year 2019 inventory, a questionnaire was sent to 60 companies, out of which 23 responded. In order to estimate emissions from those activities not covered by the replies, it was assumed that in 40 % of those activities not covered by the responses, had emissions.

Paint production

Majority of paint producers report emissions to the supervising authority and this emission data is thus available from VAHTI. Questionnaires are sent to those companies that are not obligated to report

¹⁰ also an Internet based questionnaire is used, see information under "Coating application"

emissions from their production processes. These emissions are calculated with the help of responses to the questionnaire mentioned above using the emission data and/or data on solvent use from the replies.

For the year 2019 inventory, a questionnaire was sent out to 7 companies, from which 6 responded. To estimate emissions from those companies that did not respond, it was assumed that only 40 % of those activities not included in the responses, generated emissions.

Particle emissions

Emissions are mainly generated during the manufacturing of pharmaceutical products and inks. TSP emissions are reported by the plants. PM_{10} and $PM_{2.5}$ emissions have been calculated from the TSP emissions based on fraction factors of 80 % for PM_{10} and of 50% for $PM_{2.5}$ (Karvosenoja, 2002).

Leather tanning

NH3 emissions

NH3 emissions are calculated according to EMEP/EEA Guidebook 2019 using the emission factor of 0.68 g/kg raw hid. As activity data, 2000 t raw hid/year for 1990-2019 is used and it is based on an estimate of production volumes provided in the companies' environmental permits. The same emission estimate is used for years 1990-2019 due to lack of better data. The whole calculation will be updated for next submission.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to the assessment of the magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2015

- In the submission in 2015 NH₃ emissions from leather tanning were included for the first time. 2019
- NMVOC emissions were recalculated for the years 1990-2004 (the years when the activity existed) to the 2019 submission using the method in the 2019 Guidebook.

2021

- For 1988-1989 the NMVOC emissions were split into 2D3a, 2D3b, 2D3d, 2D3e, 2D3f, 2D3g, 2D3h and 2D3i from the sum of these categories earlier reported under 2D3d using the relation of these categories in years 1990-1994 as a surrogant.
- Facility reported NH₃ emissions for 1990 from one plant were erroneously missing from 2020 submission. These were included in submission 2021.

Source-specific planned improvements

Calculation of NH₃ emissions from leather tanniing will be revised to the next submission.

Changes in chapter	
February 2021	KS & JMP

Source category description

Printing inks used in Finland vary widely in the composition, but they consist of three major components: pigments, binders and solvents. The type of ink which is used is usually the most important factor in estimating emissions from printing operations. Table 4.73 shows typical compositions of traditional printing inks in 2008.

				_		
Composition		Offset			Other pinting inks	
of printing inks	newspaper %	sheet %	heatset %	Flexographic inks %	gravure printing %	screen printing %
pigments	10-20	15-25	10-20	5-30	5-15	5-8
binders	10-35	20-40	20-40	15-30	20-35	30-40
solvent	25-75	30-50	30-50	40-70	50-70	54-60
additives	0-5	0-5	0-6	0-8	0-5	1-2

Table 4.73 Typical compositions of traditional printing inks (Antson, 2008).

NMVOC emission trend from printing activities is decreasing due to increased recovery of solvents and VOC compounds and cleaning of process emissions through e.g. incineration. The larger plants carry out NMVOC measurements from flue gases.

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.74.

Table 4.74 Contribution of Printing (NFR 2D3h) to total emissions in 2019.

Pollutant	Emissions from printing	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	0.546	84.522	Gg	0.6	56

In 2021 submission printing is a key category in NMVOC emissions, emissions are calculated with T2/T3 methods.

Emission trends

NMVOC emission trend is presented in Figure 4.34

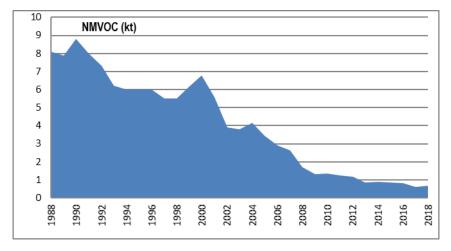


Figure 4.34 NMVOC trend in Printing

Methodological issues

NMVOC

Emissions from printing industry are based on emission reported by the plants as well as on information received as response to the questionnaire sent out by SYKE to printing houses that are not obligated to report their emissions to the supervising authority according to their environmental permits.

The largest printing houses that report their emissions account more than 80% of total NMVOC emissions from the printing industry. The remaining 20% of emissions are estimated on basis of data collected through the questionnaire (see for details under "Coating appliations"). For calculation of the year 2019 emissions, the questionnaire was sent to 78 companies, from which 27 responded. In order to estimate emissions from those companies that did not reply, it was assumed that only 40% of the emissions from those activities not included in the responses of the questionnaire, do not have emissions.

The volume of VOC containing substances, their VOC content by CAS numbers and a default volatility rate of 100% were used in the calculation, in case a more accurate volatility rate was not available.

Calculated NMVOC emissions from printing are presented in Table 4.75

NMVOC (t) NMVOC (kt) Year Year 2010 1990 8.800 1.340 1991 8.000 2011 1.250 1992 7.300 2012 1.155 1993 6.200 2013 0.865 1994 6.000 2014 0.902 1995 6.000 2015 0.853 1996 6.000 2016 0.806 1997 5.500 2017 0.604 1998 5.500 2018 0.661 1999 6.166 2019 0.546 2000 6.792 2001 5.574 2002 3.902 2003 3.815 2004 4.155 2005 3.434 2006 2.911 2007 2.631 2008 1.722 2009 1.325

Table 4.75 NMVOC emissions from printing

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to the assessment of the magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2021

- For 1988-1989 NMVOC emissions were split into categories 2D3a, 2D3b, 2D3d, 2D3e, 2D3f, 2D3g, 2D3h and 2D3i from the sum of these categories earlier reported under 2D3d using the relation of these categories in years 1990-1994 as a surrogant.

Source-specific planned improvements

In the next years

- In the 2018 submission SO_x emissions were reported under NFR 2D3h for 1990-1994. The possibly to reallocate the emissions to the energy sector is studied.

Non-scheduled

- Calculation of NMVOCs as carbon.

Other solvent use (NFR 2D3i)

Changes in chapter		
February 2021	KS & JMP	

Source category description

Activities falling under NFR 2D3i Other solvent use in the Finnish inventory with emissions generated in the processes is presented in Table 4.76.

Table 4.76 Activities and emissions reported from the other solvent use sector.

NFR	Activity	Description	Emissions
2D3i	Other product use Key category for NMVOC	Glass and mineral wool enduction (SNAP 060401-02), fat, edible oil extraction (SNAP 060404), preservation of wood (SNAP 060406), industrial application of glues and adhesives (SNAP 060405) Not estimated: domestic application of glues and adhesives	NMVOC, SO _x , NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, PAHs, HCB

Other solvent and product use is a key category in NMVOC emissions, calculated with T3/T2 methods.

Emission trends

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.77.

Table 4.77 Contribution of Other solvent and product use (NFR 2D3i) to total emissions 2019.

Pollutant	Emissions from other solvent and product use	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	1.811	84.522	Gg	2.1	5
SOx (as SO2)	<0.001	28.937	Gg	<0.1	100
NH3	0.158	31.593	Gg	0,5	96.4
PM2.5	0.042	16.622	Gg	0,3	0
PM10	0.046	30.034	Gg	0,2	0
TSP	0.049	44.952	Gg	0,1	100
BC	<0.001	3.848	Gg	<0.1	0
PAHs	0.016	22.309	Mg	<0,1	0
НСВ	0.001	22.637	kg	<0.1	0

Other solvent and products use is a minor source of NMVOC, SO_x , particles, NH_3 , HCB and PAHs. Emission trends are presented in Figure 4.35.

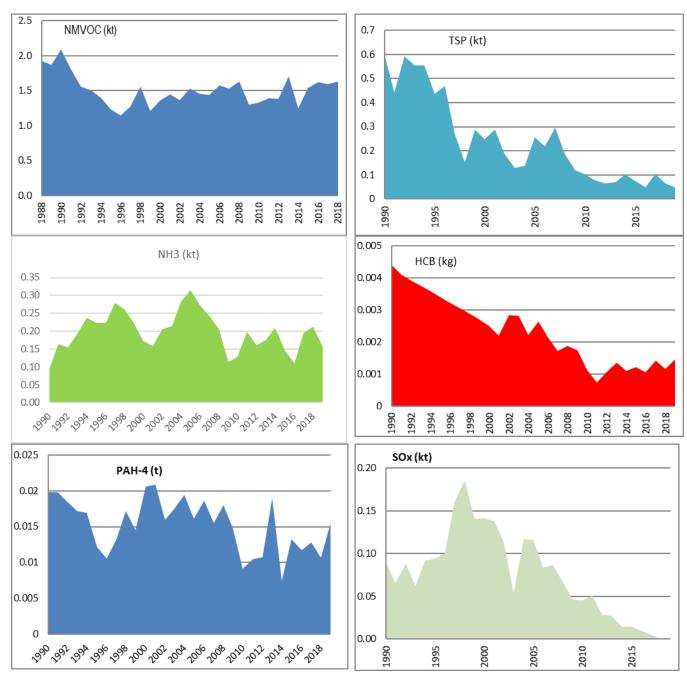


Figure 4.35 NMVOC, ammonia, particle, Sox, PAH-4 and HCB trends in Other solvent use

Methdological issues

A compilation of activites and estimation methods regarding NMVOC emissions reported under NFR Other solvent use as presented in Table 4.78.

Table 4.78 Activities and emission estimation methods for NMVOC emissions under NFR 2D3i.

Activity	Method
Glass wool enduction	Reported by operators
Mineral wool enduction	Reported by operators
Fat, edible and not edible oil exraction	Reported emissions by operators
Application of glues and adhesives	Domestic application: Finnish Cosmetics, Toiletry and Detergents Association (inclusion in the current emisions from Domestic solvent use needs to be checked) Industrial application: VAHTI database (emissions allocated to different sectors, for example 2I)
Preservation of wood	Calculation

Underseal treatment and conservation of vehicles	Finnish Cosmetics, Toiletry and Detergents Association (included in Domestic solvent use)
Vehicles dewaxing	Finnish Cosmetics, Toiletry and Detergents Association (inclusion in Domestic solvent use needs to be checked)
Other (preservation of seeds,): use of pesticides in cultivations and in construction	Calculation

Glass and Mineral Wool Enduction

NMVOC

Emissions from glass and mineral wool enduction activities are reported by the plants.

NO_x, SO_x, NH₃ and CO

Emissions are generated during manufacturing of rock and mineral wool and are based on data reported by the plants.

Particles

TSP emissions are reported by the plants and PM_{10} and $PM_{2.5}$ emissions have been calculated from the TSP emissions based on fraction factors 95 % for PM10 and 91% for PM2.5 (AEAT, 2000).

Black carbon emissions are calculated using the emission factor 0.06 % of PM2.5 (Aasestad, 2013). There is no method for BC in the Guidebook.

Solvent Extraction of edible oils

NMVOC

Emissions from solvent extraction of edible oils from oilseeds are based on emission data reported by the plants. In past years also a questionnaire was sent to companies that do not report their emissions. In 2012 it was discovered that these companies produce cold-drown vegetable oils and no NMVOCs are emitted during the production process

Industrial and domestic application of glues and adhesives

NMVOC

Emissions from industrial application of glues and adhesives are included in the total NMVOC emissions reported by the plants, and aggregated under the main activity of the plant, for instance under NFR 2I.

Domestic use of adhesive and sealants fall under NFR 2D3a.

Impregnation of wood

NMVOC

Part of emissions from wood impregnation activities is reported by the plants and available in VAHTI database. Emissions from the remaining impregnation activities are calculated with and the NMVOC emission factor for impregnation of wood 100 kg/t. (SYKE, 2001). Activity data for impregnation of wood is received from Finnish Safety and Chemicals Agency as the amount of sold creosote oil.

PAH-4

Part of emissions from wood impregnation activities is reported by the plants and available in YLVA database. Emissions from impregnation of wood and the use of impregnated wood have been calculated using the emission factors presented in Guidebook 2019. Annual volumes of impregnation of wood are presented in Table 4.79. Data on the use of impregnated wood, which is the activity data for both impregnation of wood and for the use of impregnated wood (all PAHs are assumed to be released during one year).

Use of pesticides

Use of pesticides covers all use purposes from agriculture to domestic use. The data is confidential in most recent years and can therefore not be presented in the IIR.

PAH-4

Emissions from the use of pesticides are calculated using the sales data of pesticides presented in Table 4.79 and the emission factor of 80 kg/t (SYKE, 2001). The amount of pesticides sold is received from the Finnish Food Safety Authority (TUKES).

Table 4.79 Acitivty data: Use of pesticides and impregnation of wood 1988-2019

	•	
	Use of pesticides	Impregnation of wood
1988	NE	7 800 t creosote sold***
1989	NE	NE
1990	4 789 t pesticides sold**	7 500 t creosote sold***
1991	4 253 t pesticides sold**	7 500 t creosote sold***
1992	3 348 t pesticides sold**	7 000 t creosote sold***
1993	3 106 t pesticides sold**	6 500 t creosote sold***
1994	3 119 t pesticides sold**	6 400 t creosote sold***
1995	2 767 t pesticides sold**	4 600 t creosote sold***
1996	2 630 t pesticides sold**	4 000 t creosote sold***
1997	2 755 t pesticides sold**	5 000 t creosote sold***
1998	3 059 t pesticides sold**	6 500 t creosote sold***
1999	3 000 t pesticides sold**	5 500 t creosote sold***
2000	3 161 t pesticides sold**	7 800 t creosote sold***
2001	3 680 t pesticides sold**	7 900 t creosote sold***
2002	4 230 t pesticides sold**	6 030 t creosote sold***
2003	4 355 t pesticides sold**	6 640 t creosote sold***
2004	4 146 t pesticides sold**	7 357 t creosote sold***
2005	4 726 t pesticides sold**	6 120 t creosote sold***

	Use of pesticides	Impregnation of wood
2006	5 510 t pesticides sold**	7 072 t creosote sold***
2007	6 192 t pesticides sold**	5 886 t creosote sold***
2008	6 866 t pesticides sold**	C***
2009	6 503 t pesticides sold**	C****
2010	7 412 t pesticides sold**	C****
2011	8 691 t pesticides sold**	C****
2012	8 882 t pesticides sold**	C****
2013	9 518 t pesticides sold**	C****
2014	10 250 t pesticides sold**	C****
2015	11 547 t pesticides sold**	C****
2016	13 223 t pesticides sold**	C****
2017	12 600 t pesticides sold**	C****
2018	14 375 t pesticides sold	C****
2019	14 375 t pesticides sold	C****

Use of chlorinated solvents

HCE

Emissions from the use of chlorinated solvents have been calculated with the emission factor 2 mg/t from the EMEP/EEA Guidebook (EEA, 2005) (no method in GB 2016/2019) and information from customs statistics (ULJAS) on the imports of chlorinated chemicals as presented in Table 4.80. Chlorinated solvents are not produced in Finland.

Table 4.80 Use of chlorinated solvents (Custom Statistics)

Use of chlorinated solvents per year (t) (Custom Statistics, ULJAS)					
1990	2 200 t	2000	1 250 t	2010	557 t
1991	2 050 t	2001	1 094 t	2011	371 t
1992	1 963 t	2002	1 421 t	2012	529 t
1993	1 875 t	2003	1 407 t	2013	680 t
1994	1 788 t	2004	1 110 t	2014	545 t
1995	1 700 t	2005	1 317 t	2015	603 t
1996	1 613 t	2006	1 070 t	2016	524 t
1997	1 525 t	2007	855 t	2017	702 t
1998	1 438 t	2008	936 t	2018	576 t
1999	1 350 t	2009	863 t	2019	726 t

^{*}reference Statistics Finland

^{**}reference Finnish Food Safety Authority Evira

^{***}reference Finnish Environment Institute

^{****}reference Finnish Safety and Chemicals Agency

^{*****} reference National Institute for Health and Welfare

A summary of calculated is presented in Table 4.81.

Table 4.81 NMVOC and POP emissions from other solvent use.

Year	NMVOC	НСВ	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Indeno(1,2,3-
	(kt)	(kg)	(kg)	(kg)	(kg)	cd) pyrene (kg)
1990	2.085	0.004	7.9	4.0	4.0	4.0
1991	1.793	0.004	7.9	4.0	4.0	4.0
1992	1.562	0.004	7.4	3.7	3.7	3.7
1993	1.501	0.004	6.8	3.4	3.4	3.4
1994	1.399	0.004	6.7	3.4	3.4	3.4
1995	1.240	0.003	4.8	2.4	2.4	2.4
1996	1.146	0.003	4.2	2.1	2.1	2.1
1997	1.271	0.003	5.3	2.7	2.7	2.7
1998	1.561	0.003	6.8	3.4	3.4	3.4
1999	1.214	0.003	5.8	2.9	2.9	2.9
2000	1.357	0.003	8.2	4.1	4.1	4.1
2001	1.449	0.002	8.3	4.2	4.2	4.2
2002	1.364	0.003	6.3	3.2	3.2	3.2
2003	1.530	0.003	7.0	3.5	3.5	3.5
2004	1.456	0.002	7.7	3.9	3.9	3.9
2005	1.440	0.003	6.4	3.2	3.2	3.2
2006	1.579	0.002	7.4	3.7	3.7	3.7
2007	1.528	0.002	6.2	3.1	3.1	3.1
2008	1.630	0.002	7.2	3.6	3.6	3.6
2009	1.306	0.002	5.8	2.9	2.9	2.9
2010	1.331	0.001	3.6	1.8	1.8	1.8
2011	1.395	0.001	4.2	2.1	2.1	2.1
2012	1.383	0.001	4.3	2.2	2.2	2.2
2013	1.700	0.001	7.6	3.8	3.8	3.8
2014	1.247	0.001	3.0	1.5	1.5	1.5
2015	1.539	0.001	5.3	2.7	2.7	2.7
2016	1.621	0.001	4.7	2.4	2.4	2.4
2017	1.590	0.001	5.1	2.6	2.6	2.6
2018	1.493	0.001	4.2	2.1	2.1	2.1
2019	1.811	0.001	6.2	3.1	3.1	3.1

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to the assessment of the magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2018

 Guidebook 2016 emission factors have been taken in use for calculation PAHs from preservation of wood.

2020

- The time-series have been double-checked due the false data for the use of pesticides from year 2002 in 2019 submission. The value has for an unknown reason changed for 2002 to equal the value for 2001. The correct value for the year 2002 is 1.364 (the incorrect 1.320).
- The sales data of creosote oil (not pesticides as stated in 2020 submission) as activity data for 2017 were updated.

2021

- For 1988-1989 NMVOC emissions were split into categories 2D3a, 2D3b, 2D3d, 2D3e, 2D3f, 2D3g, 2D3h and 2D3i from the sum of these categories earlier reported under 2D3d using the relation of these categories in years 1990-1994 as a surrogant.

Source-specific planned improvements

- There is need to check and possibly recalculate NMVOC emissions from solvent extraction of edible oils as the emissions may be double counted in the 1990's
- Re-check of the use of Guidebook 2019 methods for particles

4.33 Other product use (NFR 2G)

Changes in chapte	r
February 2021	KS & JMP

Source category description

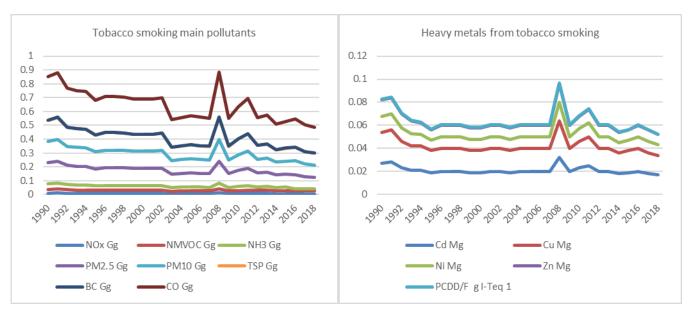

Activities falling under NFR 2G Other product use in the Finnish inventory with emissions generated in the processes is presented in Table 4.82

Table 4.82 Activities and emissions reported from the other product use sector.

NFR	Activity	Description	Emissions
2G	Other	Use of fireworks and tobacco	NO _X , NMVOC, SO _X , NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, CO, Pb, Cd, Hg, As, Cr,
	product use		Cu, PCDD/F, PAH-4, HCB
		Key categpry for	
		Pb emissions	

Emission trends

Emission trends are presented in Figure 4.36. The peak in tobacco smoking emissions is related to the peak in tobacco sales as presented in Table 4.84, where the sale figures in 2008 are exceptional. This is due the changes in taxes taken place at 1 January 2009.

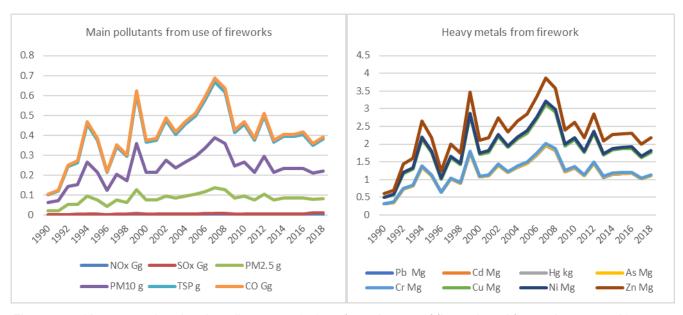


Figure 4.36 Heavy metal and main pollutants emissions from the use of firework and from tobacco smoking

The shares of emissions reported under the NFR category are presented in Table 4.83

4.83 Contribution of Other product use (NFR 2G) to total emissions 2018.

Pollutant	Emissions from other product use	Total emissions	Unit	Share of total emissions %	% reported by the plants
NOx (as NO2)	0.006	119.817	Gg	<0.1	0
NMVOC	0.02	84.522	Gg	<0.1	0
SOx (as SO2)	0.003	28.937	Gg	<0.1	0
NH3	0.013	31.593	Gg	<0.1	0
PM2.5	0.087	16.622	Gg	0.5	0
PM10	0.087	30.034	Gg	0.3	0
TSP	0.087	44.952	Gg	0.2	0
BC	<0.001	3.848	Gg	<0.1	0
CO	0.185	344.933	Gg	<0.1	0
Pb	0.891	13.22	Mg	6.7	0
Cd	0.019	0.794	Mg	2.4	0
Hg	<0.001	0.587	Mg	<0.1	0
As	0.002	2.065	Mg	<0.1	0
Cr	0.018	14.286	Mg	0.1	0
Cu	0.522	40.171	Mg	1.3	0
Ni	0.043	11.541	Mg	0.4	0
Zn	0.304	130.305	Mg	0.2	0
PCDD/ PCDF	<0.001	12.132	g I-Teq	<0.1	0
PAHs	<0.001	22.309	Mg	<0.1	0

Methdological issues

Tobacco smoking (Key category for Pb, method T2)

The annual sales statistics of cigars and cigarettes are used as activity data (Table 4.84) from Statistics Finland 1990-2010, since 2011 the statistics has been provided by National Institute for Healt and Welfare (THL). As it can be seen in Table 4.84 the sale figures in 2008 are exceptional. This is due the changes in taxes taken place at 1 January 2009. Sama activity data was used for years 2018 and 2019 emissions. Years 2019 emissions will be updated to the next submission.

Table 4.84 Activity data for tobacco smoking (Statiscs Finland, since 2011 National Institute for Healt and Welfare).

Sales of ciga	Sales of cigars and cigarettes (1990-2010 Statistics Finland, 2011-2015 National Institute for Health and Welfare (THL)							
1990	5 674 t	2006	3 751 t					
1991	5 854 t	2007	3 672 t					
1992	5 111 t	2008	5 917 t					
1993	4 994 t	2009	3 665 t					
1994	4 970 t	2010	4 219 t					
1995	4 509 t	2011	4 629 t					
1996	4 694 t	2012	3 674 t					
1997	4 709 t	2013	3 789 t					
1998	4 657 t	2014	4 317 t					
1999	4 575 t	2015	4 391 t					
2000	4 600 t	2016	4 787 t					
2001	4 598 t	2017	4 113 t					
2002	4 653 t	2018	4 133 t					
2003	3 606 t	2019	4 133 t					
2004	3 691 t							
2005	3 775 t							

Emissions from tobacco smoking are calculated with emission factors presented in Guidebook 2019 (Table 4.85).

Table 4.85 NOx, CO, NH3, SOx, NMVOC, particle and heavy metal emissions from tobacco smoking.

Year	NOx as NO2							
	Gg	NMVOC Gg	NH3 Gg	PM2.5 Gg	PM10 Gg	TSP Gg	BC Gg	CO Gg
1990	0.010	0.027	0.042	0.153	0.153	0.153	0.0007	0.313
1991	0.011	0.028	0.044	0.158	0.158	0.158	0.0007	0.323
1992	0.009	0.025	0.038	0.138	0.138	0.138	0.0006	0.282
1993	0.009	0.024	0.037	0.135	0.135	0.135	0.0006	0.275
1994	0.009	0.024	0.037	0.134	0.134	0.134	0.0006	0.274
1995	0.008	0.022	0.034	0.122	0.122	0.122	0.0005	0.248
1996	0.008	0.023	0.035	0.127	0.127	0.127	0.0006	0.259
1997	0.008	0.023	0.035	0.127	0.127	0.127	0.0006	0.259
1998	0.008	0.023	0.035	0.126	0.126	0.126	0.0006	0.257
1999	0.008	0.022	0.034	0.124	0.124	0.124	0.0006	0.252
2000	0.008	0.022	0.034	0.124	0.124	0.124	0.0006	0.253
2001	0.008	0.022	0.034	0.124	0.124	0.124	0.0006	0.253
2002	0.008	0.022	0.035	0.126	0.126	0.126	0.0006	0.256
2003	0.006	0.017	0.027	0.097	0.097	0.097	0.0004	0.199
2004	0.007	0.018	0.028	0.100	0.100	0.100	0.0004	0.203
2005	0.007	0.018	0.028	0.102	0.102	0.102	0.0005	0.208
2006	0.007	0.018	0.028	0.100	0.100	0.100	0.0005	0.207
2007	0.007	0.018	0.027	0.099	0.099	0.099	0.0004	0.202
2008	0.011	0.029	0.044	0.158	0.158	0.158	0.0007	0.326
2009	0.007	0.018	0.027	0.099	0.099	0.099	0.0004	0.202
2010	0.008	0.020	0.032	0.114	0.114	0.114	0.0005	0.232
2011	0.008	0.022	0.035	0.125	0.125	0.125	0.0006	0.255
2012	0.007	0.023	0.027	0.099	0.099	0.099	0.0004	0.202
2013	0.007	0.024	0.028	0.102	0.102	0.102	0.0005	0.209
2014	0.006	0.021	0.025	0.091	0.091	0.091	0.0004	0.185
2015	0.006	0.021	0.026	0.094	0.094	0.094	0.0004	0.192
2016	0.007	0.021	0.015	0.100	0.100	0.100	0.0004	0.203
2017	0.006	0.020	0.014	0.090	0.090	0.090	0.0004	0.193
2018	0.006	0.020	0.013	0.087	0.087	0.087	0.0004	0.187
2019	0.060	0.020	0.013	0.087	0.087	0.087	0.0004	0.187

Year	Cd Mg	Cu Mg	Ni Mg	Zn Mg	PCDD/F g I-Teq 1
1990	0.027	0.027	0.014	0.014	0.0006
1991	0.028	0.028	0.014	0.014	0.0006
1992	0.023	0.023	0.012	0.012	0.0005
1993	0.021	0.021	0.011	0.011	0.0005
1994	0.021	0.021	0.010	0.010	0.0005
1995	0.019	0.019	0.009	0.009	0.0005
1996	0.020	0.020	0.010	0.010	0.0005
1997	0.020	0.020	0.010	0.010	0.0005
1998	0.020	0.020	0.010	0.010	0.0005
1999	0.019	0.019	0.010	0.010	0.0005
2000	0.019	0.019	0.010	0.010	0.0005
2001	0.020	0.020	0.010	0.010	0.0005
2002	0.020	0.020	0.010	0.010	0.0005
2003	0.019	0.019	0.010	0.010	0.0004
2004	0.020	0.020	0.010	0.010	0.0004
2005	0.020	0.020	0.010	0.010	0.0004
2006	0.020	0.020	0.010	0.010	0.0004
2007	0.020	0.020	0.010	0.010	0.0004
2008	0.032	0.032	0.016	0.016	0.0006
2009	0.020	0.020	0.010	0.010	0.0004
2010	0.023	0.023	0.011	0.011	0.0004
2011	0.025	0.025	0.012	0.012	0.0005
2012	0.020	0.020	0.010	0.010	0.0004
2013	0.020	0.020	0.010	0.010	0.0004
2014	0.018	0.018	0.009	0.009	0.0003
2015	0.019	0.019	0.009	0.009	0.0003
2016	0.020	0.020	0.010	0.010	0.0004
2017	0.018	0.018	0.010	0.010	0.0003
2018	0.017	0.017	0.009	0.009	0.0003
2019	0.017	0.017	0.009	0.009	0.0003

Use of fireworks

The amount of imported fireworks is used as activity data for the whole time series since 1990. The emission factors are from Guidebook 2019. The amount of imported fireworks is presented in Table 4.86 and the emissions in Tables 4.87a and b.

Table 4.86 Amount of imported fireworks (tonnes) (Custom Statiscis)

Year	Imported fireworks (t)	Year	Imported fireworks (t)	Year	Imported fireworks (t)
1990	396	2001	1418	2012	1853
1991	454	2002	1785	2013	1360
1992	939	2003	1528	2014	1474
1993	1040	2004	1727	2015	1497
1994	1721	2005	1859	2016	1506
1995	1418	2006	2169	2017	1303
1996	809	2007	2512	2018	1420
1997	1299	2008	2332	2019	1136
1998	1138	2009	1566		
1999	2253	2010	1702		
2000	1370	2011	1417		

Table 4.87a NOx, CO, Sox and and particle emissions from use of fireworks.

Year	NOx Gg	SOx Gg	PM2.5 g	PM10 g	TSP g	CO Gg
1990	0.00010	0.0012	0.02	0.04	0.04	0.0028
1991	0.00012	0.0014	0.02	0.05	0.05	0.0032
1992	0.00024	0.0028	0.05	0.09	0.10	0.0067
1993	0.00027	0.0031	0.05	0.10	0.11	0.0074
1994	0.00045	0.0052	0.09	0.17	0.19	0.0123

1995	0.00037	0.0043	0.07	0.14	0.16	0.0101
1996	0.00021	0.0024	0.04	0.08	0.09	0.0058
1997	0.00034	0.0039	0.07	0.13	0.14	0.0093
1998	0.00030	0.0034	0.06	0.11	0.12	0.0081
1999	0.00059	0.0068	0.12	0.23	0.25	0.0161
2000	0.00036	0.0041	0.07	0.14	0.15	0.0098
2001	0.00037	0.0043	0.07	0.14	0.16	0.0101
2002	0.00046	0.0054	0.09	0.18	0.20	0.0128
2003	0.00040	0.0046	0.08	0.15	0.17	0.0109
2004	0.00045	0.0052	0.09	0.17	0.19	0.0123
2005	0.00048	0.0056	0.10	0.19	0.20	0.0133
2006	0.00056	0.0066	0.11	0.22	0.24	0.0155
2007	0.00065	0.0076	0.13	0.25	0.28	0.0180
2008	0.00061	0.0070	0.12	0.23	0.26	0.0167
2009	0.00041	0.0047	0.08	0.16	0.17	0.0112
2010	0.00044	0.0051	0.09	0.17	0.19	0.0122
2011	0.00037	0.0043	0.07	0.14	0.16	0.0101
2012	0.00048	0.0056	0.10	0.19	0.20	0.0133
2013	0.00035	0.0041	0.07	0.14	0.15	0.0097
2014	0.00038	0.0045	0.08	0.15	0.16	0.0105
2015	0.00039	0.0045	0.08	0.15	0.16	0.0107
2016	0.00039	0.0045	0.08	0.15	0.17	0.0108
2017	0.00034	0.0039	0.07	0.13	0.14	0.0093
2018	0.00037	0.0043	0.07	0.14	0.16	0.0102
2019	0.00030	0.0034	0.06	0.11	0.12	0.0081

Table 4.87b Heavy metal emissions from use of fireworks.

Year	Pb Mg	Cd Mg	Hg kg	As Mg	Cr Mg	Cu Mg	Ni Mg	Zn Mg
1990	0.3103	0.0006	0.00023	0.0005	0.0062	0.176	0.012	0.103
1991	0.3556	0.0007	0.0026	0.0006	0.0071	0.201	0.014	0.118
1992	0.7364	0.0014	0.00054	0.0012	0.0147	0.417	0.028	0.244
1993	0.8154	0.0015	0.00059	0.0014	0.0162	0.462	0.031	0.270
1994	1.3493	0.0025	0.00098	0.0023	0.0268	0.764	0.052	0.447
1995	1.1114	0.0021	0.00081	0.0019	0.0221	0.629	0.043	0.369
1996	0.6342	0.0012	0.00046	0.0011	0.0126	0.359	0.024	0.210
1997	1.0185	0.0019	0.00074	0.0017	0.0203	0.577	0.039	0.338
1998	0.8920	0.0017	0.00065	0.0015	0.0177	0.505	0.034	0.296
1999	1.7667	0.0033	0.00128	0.0030	0.0352	1.001	0.068	0.586
2000	1.0740	0.0020	0.00078	0.0018	0.0214	0.608	0.041	0.356
2001	1.1118	0.0021	0.00081	0.0019	0.0221	0.630	0.043	0.369
2002	1.3991	0.0026	0.00102	0.0024	0.0278	0.792	0.054	0.464
2003	1.1978	0.0023	0.00087	0.0020	0.0238	0.678	0.046	0.397
2004	1.3537	0.0026	0.00098	0.0023	0.0269	0.767	0.052	0.449
2005	1.4575	0.0028	0.00106	0.0025	0.0290	0.825	0.056	0.483
2006	1.7005	0.0032	0.00124	0.0029	0.0338	0.963	0.065	0.564
2007	1.9697	0.0037	0.00143	0.0033	0.0392	1.115	0.075	0.653
2008	1.8279	0.0035	0.00133	0.0031	0.0364	1.035	0.070	0.606
2009	1.2278	0.0023	0.00089	0.0021	0.0244	0.695	0.047	0.407
2010	1.3341	0.0025	0.00097	0.0023	0.0265	0.756	0.051	0.442
2011	1.1109	0.0021	0.00081	0.0019	0.0221	0.629	0.043	0.368
2012	1.4529	0.0027	0.00106	0.0025	0.0289	0.823	0.056	0.482
2013	1.0660	0.0020	0.00078	0.0018	0.0212	0.604	0.041	0.354
2014	1.1557	0.0022	0.00084	0.0020	0.0230	0.655	0.044	0.383
2015	1.1733	0.0022	0.00085	0.0020	0.0233	0.664	0.045	0.389
2016	1.1811	0.0022	0.00086	0.0020	0.0235	0.669	0.045	0.392
2017	1.0213	0.0019	0.00074	0.0017	0.0203	0.578	0.039	0.339
2018	1.1133	0.0021	0.00081	0.0019	0.0222	0.630	0.043	0.369
2019	0.8906	0.0017	0.00065	0.0015	0.0177	0.504	0.034	0.295

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to the assessment of the magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2004

- Particle emissions from the use of fireworks were included to the 2004 inventory for the first time.
 2008
- NMVOC emissions from tobacco smoking were included 2015
- NH3 emissions were included.

2017

• The calculation of the use of fireworks was revised for the whole time series. In the previous calculations the number of inhabitants was used as activity data. In the new calculation the amount of imported fireworks (tonnes) is used as activity data for whole time series since 1990.

2018

 The calcution of tobacco smoking was revised for the whole time series using emission factors from Guidebook 2016.

2019

• NH₃ emissions from tobacco smoking were corrected for the whole time series.

Source-specific planned improvements

- The possibility to include emissions from tobacco use since 1980 will be investigated.
- All emissions from tobacco smonking for year 2019 will be updated.

4.6 Other industrial production (NFR 2H)

Changes in chapter	
February 2021	JMP KS

Source category description

Other industrial production includes pulp and paper industry and food and beverages industry. NMVOC and particle emissions are typical emissions for these categories. Also sulphur dioxide, ammonia, dioxins and zinc emissions are generated.

NFR	Processes	Description	Emissions reported
2H1	Pulp and paper industry	Pulp and paper mills	NMVOC, NH3, TSP, PM10, PM2.5, BC, , SOx, HCB, PCB
2H2	Food and beverages industry	Food and drink industry	NMVOC, TSP, PM10, PM2,5, SOx
2H3	Other industrial processes	Not Occuring	

Methodological issues

Emissions of those plants that report their emissions to the supervising authorities¹¹ according to the monitoring requirements in the environmental permits are in most cases reported as IE. This is because in most cases the reporting obligations determined in the monitoring programmes are for the total

emissions of the plants and not separated between fuel combustion and other processes. Thus it has not been possible to make a complete split between emissions from fuel based and non-fuel based sources. In cases where it has been possible to separate fuel combustion emissions from process emissions, these are reported separately under NFR 2H categories. For those plants that report only total emissions, the split is based on the default emissions calculated on basis of fuel consumption which is reduced from the emissions reported by the plants and reported under the NFR 1A2qviii.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

None

Source-specific planned improvements

None

Pulp and paper (NFR 2H1)

Changes in chapter					
February 2021	JMP KS				

Source category description

A typical feature for the Finnish pulp and paper industry is the integrated pulp and paper mills, where the use of energy can be optimized between the energy intensive paper production and the energy sources produced in the pulp processes.

All Finnish chemical pulp mills use sulphate process. The last sulphite-based processes were closed in 1991.

The industry has been subject to large changes and efficiency improvements during the last decades. The number of mills has continuously been decreasing since the 1980's while the production volumes significantly increased until 2006-2007 as presented in Figures 4.37-4.38 and in Table 4.89.

Between the years 2006-2009 approximately ten paper machines and pulp mills were closed down. In 2015 there were 19 pulp mills altogether, out of which 17 chemical pulp mills and in 2019 there were 19 pulp mills, 17 paper mills and 14 paperboad mills.

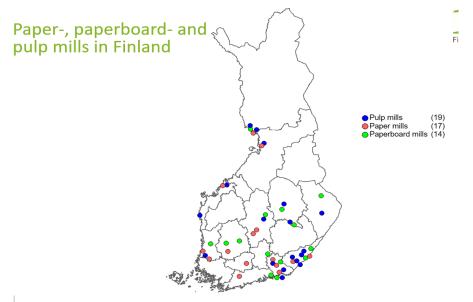


Figure 4.37 Forest industry production plants 2019

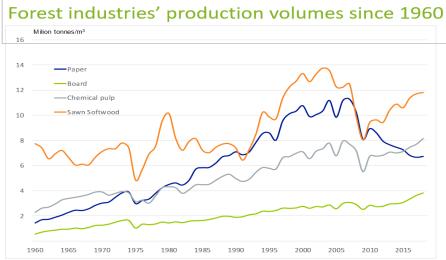


Figure 4.38 Production voljumes volumes (below) in Finland 1980-2018 Source Finnish Forest Industries Federation (2020)

Production of pulp and paper and the number of plants 1980-2015

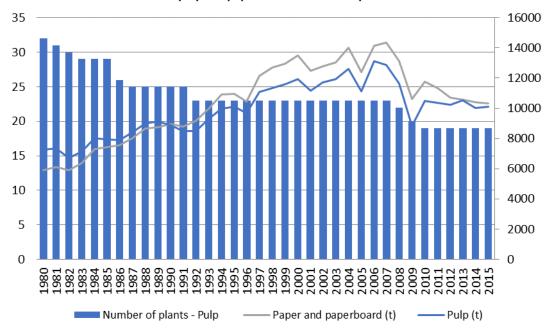


Figure 4.39 Production volumes and number of pulp and paper plants 1980-2015.

Table 4.88 Pulp and paper production since 1988 (Finnish Forest Industries Federation)

Year	Produced pulp (mill t)	Produced mechanical pulp (mill t)	Produced paper (mill t)
1988	5.3	3.2	8.8
1989	5.0	3.8	9.0
1990	4.7	4.1	9.0
1991	4.9	3.6	8.8
1992	4.9	3.6	9.2
1993	5.5	3.9	10.0
1994	5.8	4.1	10.9
1995	5.8	4.4	10.9
1996	5.7	4.0	10.4
1997	6.6	4.5	12.1
1998	6.7	4.6	12.7
1999	7.0	4.6	12.9
2000	7.1	4.8	13.5
2001	6.5	4.6	12.5
2002	7.1	4.6	12.8
2003	7.4	4.6	13.1
2004	7.7	4.8	14.0
2005	6.7	4.4	12.4
2006	13.4	included in produced pulp	14.1
2007	13.2	included in produced pulp	14.3
2008	11.6	included in produced pulp	13.1
2009	8.9	included in produced pulp	10.6
2010	10.7	included in produced pulp	11.9
2011	10.3	included in produced pulp	11.4
2012	10.4	included in produced pulp	10.7
2013	10.8	included in produced pulp	10.6
2014	10.7	included in produced pulp	10.4
2015	10.8	included in produced pulp	11.5
2016	10.5	included in produced pulp	9.9
2017	11.6	included in produced pulp	10.3
2018	12.1	included in produced pulp	10.5
2019	11.9	included in produced pulp	9.5

Emission trends

Emissions reported under this NFR category include process based SO₂ emissions calculated from reduced sulphur compounds (TRS), ammonia, particle and NMVOC emissions. Also from the early 90's HCB and PCB emissions have been reported due the use of chlorinated solvents.

The time series have been recalculated in 2018 submission. Variations in the emission levels do not fully represent actual variations in emissions. This is due to the use of point source data reported by the plants, which cannot be separated for energy and process sources unless energy related emissions are calculated separately and deducted from the total emissions reported

Emission trends

Emissions trends are presented in Figure 4.30

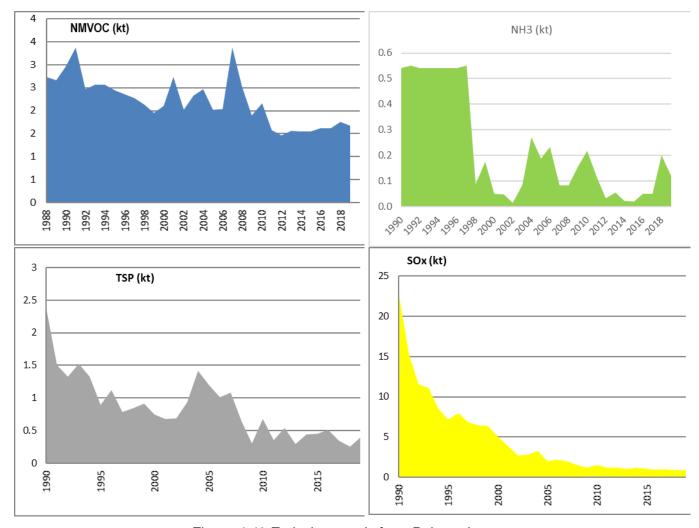


Figure 4.40 Emission trends from Pulp and paper

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.89

Table 4.89 Contribution of Pulp and paper industry (2H1) to total emissions in 2019 Note: NOx emissions are allocated to 1A2d)

Pollutant	Emissions from 2H1	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	1.67	84.522	Gg	2	12.9
SOx (as SO2)	0.885	28.937	Gg	3.1	100
NH ₃	0.119	31.593	Gg	0.4	100
PM2.5	0.21	16.622	Gg	1.3	0
PM10	0.277	30.034	Gg	0.9	0
TSP	0.395	44.952	Gg	0.9	100
BC	0.005	3.848	Gg	0.1	0

In 2021 submission pulp and paper industry is a key category in NMVOC, SOx, NH₃, PM_{2,5}, PM₁₀ and TSP emissions and all these emissions are reported by the plants (T3),

Methodological issues

Emissions are mainly reported by the plants according to the monitoring requirements in the environmental permits. When no plant specific data is available emissions has been calculated.

Activity data

Emissions not reported by the plants are calculated from total production volumes (Table 4.91). Until 2005 the data was available by pulp types.

Nitrogen dioxide

Nitrogen dioxide emissions from the pulp and paper industry are based on data reported by the plants to the supervising authorities¹² according to the monitoring requirements in their environmental permits. NO₂ emissions from the pulp and paper industry are allocated in the inventory as fuel-based emissions under NFR 1A2d though they include also process emissions of these compounds.

Sulphur emissions reported as SO₂

Sulphur dioxide emissions are based on data reported by the plants to the supervising authorities ¹³ according to the monitoring requirements in their environmental permits. SO₂ emissions are partly allocated in the inventory as fuel-based emissions under NFR 1A2d though they may include also process emissions of these compounds. It has not been possible to split all SO₂ emissions between fuel based and non-fuel based due to the fact that the reporting obligations given to the plants are for the total emissions.

The process-based emissions include different sulphur compounds such as TRS (total reduced sulphur) and calculated as SO₂ equivalents. Most of the smelly gases are nowadays collected and incinerated due to the requirements for smell abatement in the environmental permits.

Particles

The plants report total suspended particle emissions to the supervising authorities and this data is used in the calculation of PM_{10} and $PM_{2.5}$ particle size fractions with factors 99.3% (PM_{10}) and 86.3 % ($PM_{2.5}$) for recovery boiler and with factors 98 % (PM_{10}) and 96% ($PM_{2.5}$) for lime kiln. Size factors for recovery boiler are based on expert estimate, Karvosenja (2001) and factors for lime kiln are taken from USEPA AirChief (1988). Black carbon emissions are calculated using the emission factor 2.6 % of $PM_{2.5}$ (Guidebook 2019, EEA 2019).

Heavy metals

As, Cr, Ni, V, Pb, Cd and Hg emissions from process boilers are included The occurrence and level of Cu and Zn emissions will be studied for the next submission in 2019.

NMVOC

NMVOC emissions from the pulp and paper industry are partly included in the compliance reporting of the plants and thus available in VAHTI. For plants, which are not obligated to report their NMVOC emissions, these are calculated by using plant specific activity data and emission factor based on information from the Finnish Forest Industries Federation FIFF. The emission factors presented in Table 4.90 are based on the actual levels observed at the plants (Reino Lammi, 2000). NMVOC emissions from pulp and paper sector are presented in Table 4.91.

Table 4.90 NMVOC emission factors kg/t of pulp (Finnish Forest Industries Federation).

Year	chemical	mechanical pulp	paper	Year	chemical	mechanical pulp	paper
1988	0.7			2000-2005	0.1	0.2	0.01
1989	0.65						
1990	0.4			from 2006		0.14	0.01
1991	0.37					0.14	
1992	0.34			Pulping:			
1993	0.31	0.2	0.01	shamical hatu	.oon 1000 1000 ;	s based on written ir	formation by
1994	0.28			Reino Lammi, F		s based on written ii	ilorillation by
1995	0.25			Reilio Laillilli, i	TIF		
1996	0.22			Since 2006 che	mical and mecha	nical pulp productio	n statistics
1997	0.19			have not been	available separa	tely. Therefore a con	nbined EF has
1998	0.16			been used			
1999	0.13						

Table 4.91 NMVOC emissions from pulp and paper sector

Year	NMVOC (t)	Year	NMVOC (t)	Year	NMVOC (t)
1990	2966	2000	2110	2010	2162
1991	3376	2001	2737	2011	1583
1992	2464	2002	2021	2012	1467
1993	2558	2003	2329	2013	1568
1994	2567	2004	2468	2014	1542
1995	2435	2005	2027	2015	1555
1996	2358	2006	2039	2016	1611
1997	2273	2007	3371	2017	1616
1998	2130	2008	2526	2018	1759
1999	1958	2009	1901	2019	1670

POP emissions

PCDD/F emissions originate from combustion of bark in grate ovens and are reported by the plants to the supervising authorities and allocated under NFR 1A2d.

PCB and HCB emissions in the timeseries are due to the use of elemental chlorine in the bleaching process, which ended by 1994. Thereafter no PCB or HCB compounds are used or generated in pulp and paper processes. Emissions in between 1980-1989 are not estimated but are reported for 1990-1994 by the plants according to their monitoring requirements in their permits as in Table 4.92.

Table 4.92 PCB and HCB emissions from pulp bleaching 1990-1994

Year	1990	1991	1992	1993	1994
PCB (kg)	1.431	1.106	0.52	0.26	0.169
HCB (kg)	0.020	0.016	0.007	0.004	0.002

NH_3

Ammonia emissions may occur related to fumes from solvents, extinguishers, causticizing and smelly gases in cases when there are exceptional situations in the normal collection of these gases. NH_3 emissions are reported by plants to the supervising authorities. NH_3 emissions total annually to 0.01-0.05 kt and are allocated under NFR 2H1. In 2018 NH_3 emisssion are quite large, due the use of sulphite liquir in a one plant. The emissions in early 1990s are expert estimates based at the reporting at that time and cannot be recalculated.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to the assessment of the magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

None.

Source-specific planned improvements

Not scheduled

• For the future inventories, it will be studied, if ammonia is released in all processes and if it is necessary to establish an inventory for ammonia emissions covering all pulp and paper plants.

Food and beverages industry (NFR 2H2)

Changes in chapter				
February 2021	JMP KS			

Source category description

Food and drink industries in Finland include production of coffee, sugar, yeast, dairies, production of wine and beer as well as production of animal feed as summarized in Table 4.93.

Air pollutant emissions from food and drink depend on the production and use volumes over the years.

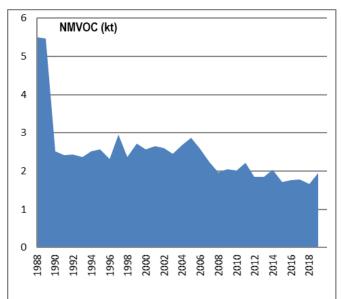
Table 4.93 Emissions reported under NFR 2H2

Product	Number of plants in YLVA allocated to this sector	Emissions reported by plants	Emissions calculated
Bread, bisquits	-		NMVOC
Wine	-		NMVOC
Beer	-		NMVOC
Spirits	< 5	NMVOC	NMVOC
Sugar production	-		TSP, PM10, PM2.5, NMVOC
Meat, fish etc. frying/curing	-		TSP, PM10, PM2.5
Coffee	-		NMVOC
Yeast	-		NMVOC
Dairies	< 5	TSP	PM10, PM2.5
Animal feed and raw material for animal feed	< 5	TSP, NMVOC	PM10, PM2.5, NMVOC
Food production	< 5	TSP	PM10, PM2.5

Food and beverages industry is a key category for NMVOC, PM₁₀ and PM_{2.5} emissions, which are based on T2/T3 methods.

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 4.94

Table 4.94 Contribution of Food and beverages industry (NFR 2H2) to total emissions in 2019.


Pollutant	Emissions from food and drink industry	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	1.947	84.522	Gg	2.3	0.1
PM2.5	0.397	16.622	Gg	2.4	0
PM10	0.412	30.034	Gg	1.4	0
TSP	0.429	44.952	Gg	1.0	17.9

Emission trends

Food and beverages industry is a minor source of NMVOC and particle emissions, the share of total emissions is only 1-2 %. Emissions depend on production rates, that have been quite constant over the timeseries. Emission trends are presented in Figure 4.41.

NMVOC emission level in 1988-1989 is based on expert estimates at the time of original reporting and will be studied closely to the next submissions.

Particle emissions' level is increasing slightly due to the increase of companies, that report their emissions. The peaks in 2004-2011 are due to problems in abatement technogy at one plant.

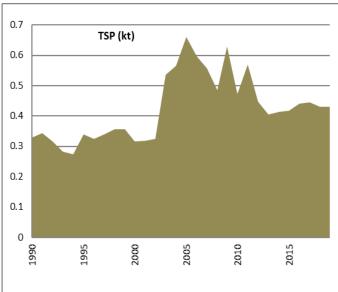


Figure 4.41 NMVOC and TSP emission trends in 2H2

Methodological issues

NMVOC

NMVOC emissions are reported by some plants from the production of spirits and food production to the supervising authorities and available for the inventory from the YLVA database.

NMVOC emissions from those plants that do not report the emissions are calculated from production data using national or EMEP/EEA Guidebook emission factors as presented in Table 4.95.

Table 4.95 NMVOC emission factors for Food and beverage production

Product	EF	Reference
Wholemeal bread products	3 kg/t	Guidebook 2019
other breads	4.5 kg/t	Guidebook 2019
cakes and bisquits	1 kg/t	Guidebook 2019
roasting of coffee	0.6 kg/t	Guidebook 2019
sugar production	10 kg/t	Guidebook 2019
yeast production, no method in the GB	18 kg/t	National based on expert knowledge (SYKE 2007)
wine production	0.8 kg/m3	Guidebook 2019
beer production factor	0.35 kg/m3	Guidebook 2019

All emission factors except roasting of coffee and yeast production are from the EMEP/EEA Guidebook, (2019). The emission factor for roasting of coffee is an expert estimated based on environmental permits (Paulig, 2005).

Fish meal production is included under NFR 2H2 and the data is reported by the plants.

Production volumes used in the calculation of NMVOC emissions are presented in Table 4.96.

Table 4.96 Bread, cakes, bisquits production volumes, roasting of coffee and sugar, yeast, wine and beer production (Finnish Food and Drink Indusriries' Federation, Finnish Coffee Roasters' Association, Suomen Hiiva and National Supervisory Authority for Welfare and Healt)

Year	Bread (wholemeal) products (million kg)	Bread (other) products (million kg)	Cakes, bisquits etc (million kg)	Roasting of coffee (t)	Sugar beet production (t)
1990	52.1*	108.7*	19.9*	50678	1125
1991	52.1*	108.7*	19.9*	49979	1043
1992	52.1*	108.7*	19.9*	50868	1049
1993	52.1*	108.7*	19.9*	50792	996
1994	52.1	108.7	19.9	46747	1097
1995	52.1*	108.7*	19.9*	40715	1110
1996	52.1*	108.7*	19.9*	47396	897
1997	57.4	118.9	21.5	44617	1360
1998	57.4*	118.9*	21.5*	47819	892
1999	57.4*	118.9*	21.5*	47091	1172
2000	57.4*	118.9*	21.5*	44991	1046
2001	57.4*	118.9*	21.5*	47280	1105
2002	57.4*	118.9*	21.5*	46300	1066
2003	95.2	120.9	29.7	47057	892
2004	95.2*	120.9*	29.7*	47751	1064
2005	95.2*	120.9*	29.7*	46871	1181
2006	95.2*	120.9*	29.7*	48749	952
2007	95.2*	120.9*	29.7*	48745	673
2008	95.2*	120.9*	29.7*	49266	468
2009	95.2*	120.9*	29.7*	48336	559
2010	94	94	31.7	46442	542
2011	94*	94*	31.7*	44165	676
2012	94*	94*	31.7*	43879	399
2013	91.9	91.9	32	45929	480
2014	91.9*	91.9*	32*	45030	626
2015	93.2	93.2	31.2	46000	407
2016	93.2	93.2	31.2	46000	434
2017	92.5	99.6	30.9	43000	430
2018	92.5	99.6	30.9	43400	356
2019	85.0	104	32.7	43300	501
Year	Yeast production (t)	Wine production (m3)	Beer production (m3)		
1990	7540	18111	413130		
1991	7440	16028	432563		
1992	7620	19938	454064		
1993	8130	24043	458237		
1994	9140	26606	433660		
1995	9610	40383	454468		
1996	10360	42583	464307		
1997	9680	43675	469614		
1998	8810	58964	454751		
1999	7940	67441	464932		
2000	7640	67500	465000		
2001	7642	68000	465000		
2002	8354	18520	400868		
2003	7700	18500	381451		

2004	7700	17380	444500	
2005	7750	66159	456544	
2006	7934	66886	449956	
2007	7942	67271	442342	
2008	8224	68736	433484	
2009	7395	58223	409427	
2010	7897	59008	395072	
2011	10029	51905	397800	
2012	9835	43559	378418	
2013	9416	43559	378418	
2014	8628	53427	388468	
2015	5832	55818	407119	
2016	7465	55392	410443	
2017	7800	51710	403630	
2018	6400	47592	392401	
2019	6850	47305	381416	

^{*} for 1990-1993 and 1995, 1996 years 1994 value was used, for 1998-2002 years 1997 value was used, for 2004-2009 years 2003 value, for 2011 and 2012 years 2010 value and for 2014 years 2013 value.

Particles

The plants report total suspended particle emissions according to monitoring requirements in their environmental permits and this data is available in VAHTI. PM₁₀ and PM_{2.5} particle size fraction emissions are calculated from TSP emissions with factors 75 % (PM₁₀) and 60 % (PM_{2.5}) from USEPA Air Chief, 1998.

Particle emissions are also calculated from the commercial and residential meat frying and barbeque reported since year 2001. Emission factors are from TNO database (2002) and from McDonald., J etc (2012) and activity data from Finnish Food and Drink Industries' Federation, ETL (2018). For meat frying emission factor 0.0013 t/t meat consumed is used for TSP, PM₁₀ and PM_{2.5} as well as for barbeques factor 8.9 kg/ton meat is used for TSP, PM₁₀ and PM_{2.5}.

For the 2017 submission, the emission factors for food heating in barbeques were revised for whole time series. The new emission factors for TSP, PM_{10} and $PM_{2.5}$ are more accurate than the old ones as they are based on actual measurements (McDonald, J., etc (2012) (Emissions fron Charbroiling and Grilling of Chicken and Beef, Macdonald., J., Zielinska B., Fujita E., Sagebiel J., Chow J. and Watson J (2012 in Journal of the Air&Waste Management Association)

Activity data

Activity data are presented in Table 4.97. The first figures in brackets in the columns are the amount of meat, while the following persentages with which the amount of meat is multiplied, are representing the following assumptions: It is estimated that from the total meat consumption (beef, pork and poultry) 40% is consumed as pure meat and 60% as processed food. 90% of pure meat is fried and 15% of that in barbeques (Anttonen, ETL, 2000).

Emissions from food and beverages industry are presented in Table 4.98.

Table 4.97 Activity data and for commercial and residential meat frying and barbeque.

Meat volume in the first bracket following the persentages of the different treatments					
Comm	ercial and residential meat frying [1 000 t]	Commercial and residential barbecue's, from food heating [1 000 t]			
1990	(306.5) x 40% x 90% x 85%	(306.5) x 40% x 90% * 15%			
1991	(306.7) x 40% x 90% x 85%	(306.7) x 40% x 90% * 15%			
1992	(299.3) x 40% x 90% x 85%	(299.3) x 40% x 90% * 15%			
1993	(287.3) x 40% x 90% x 85%	(287.3) x 40% x 90% * 15%			
1994	(287.6) x 40% x 90% x 85%	(287.6) x 40% x 90% * 15%			
1995	(313.5) x 40% x 90% x 85%	(313.5) x 40% x 90% * 15%			

1996	(317.3) x 40% x 90% x 85%	(317.3) x 40% x 90% * 15%
1997	(319.8) x 40% x 90% x 85%	(319.8) x 40% x 90% * 15%
1998	(336.5) x 40% x 90% x 85%	(336.5) x 40% x 90% * 15%
1999	(337.7) x 40% x 90% x 85%	(337.7) x 40% x 90% * 15%
2000	(168.8 + 99.0 + 68.9) x 40% x 90% x 85%	(168.8 + 99.0 + 68.9) x 40% x 90% * 15%
2001	(167.8 + 92.4 + 75.4) x 40% x 90% x 85%	(167.8 + 92.4 + 75.4) x 40% x 90% * 15%
2002	(165.6 + 92.9 + 80.2) x 40% x 90% x 85%	(165.6 + 92.9 + 80.2) x 40% x 90% * 15%
2003	(171.9 + 95.9 + 82.5) x 40% x 90% x 85%	(171.9 + 95.9 + 82.5) x 40% x 90% * 15%
2004	(176.9 + 99.3 + 83.3) x 40% x 90% x 85%	(176.9 + 99.3 + 83.3) x 40% x 90% * 15%
2005	(175.7 + 97.5 + 84.3) x 40% x 90% x 85%	(175.7 + 97.5 + 84.3) x 40% x 90% * 15%
2006	(180.6 + 97.3 + 82.9) x 40% x 90% x 85%	(180.6 + 97.3 + 82.9) x 40% x 90% * 15%
2007	(184.8 + 99.0 + 93.2) x 40% x 90% x 85%	(184.8 + 99.0 + 93.2) x 40% x 90% * 15%
2008	(187.4 + 96.6 + 98.1) x 40% x 90% x 85%	(187.4 + 96.6 + 98.1) x 40% x 90% * 15%
2009	(183.7 + 95.1 + 93.0) x 40% x 90% x 85%	(183.7 + 95.1 + 93.0) x 40% x 90% * 15%
2010	(187.0 + 99.8 + 97.4) x 40% x 90% x 85%	(187.0 + 99.8 + 97.4) x 40% x 90% * 15%
2011	(187.0 + 99.8 + 97.4) x 40% x 90% x 85%	(187.0 + 99.8 + 97.4) x 40% x 90% * 15%
2012	(193.0 + 81 + 107) x 40% x 90% x 85%	(193.0 + 81 + 107) x 40% x 90% x 15%
2013	(195.0 + 81 + 111) x 40% x 90% x 85%	(195.0 + 81 + 111) x 40% x 90% x 15%
2014	(186.0 + 83 + 113) x 40% x 90% x 85%	(186.0 + 83+ 113) x 40% x 90% x 15%
2015	(192.0 + 86 + 117) x 40% x 90% x 85%	(192.0 + 86+ 117) x 40% x 90% x 15%
2016	(190.0 + 87 + 125) x 40% x 90% x 85%	(190.0 + 87+ 125) x 40% x 90% x 15%
2017	(181.2 + 85 +130) x 40% x 90% x 85%	(181.2 + 85 +130) x 40% x 90% x 15%
2018	(169 + 87 + 137) x 40% x 90% x 85%	(169 + 87 + 137) x 40% x 90% x 15%
2019	(171+88+140) x 40% x 90% x 85%	(171+88+140) x 40% x 90% x 15%

Table 4.98 NMVOC and particle emissions from food and beverages industry

Year	NMVOC (t)	TSP	PM ₁₀	PM _{2.5}
1990	2523	0.303	0.320	0.329
1991	2420	0.315	0.336	0.344
1992	2428	0.301	0.314	0.316
1993	2373	0.266	0.270	0.283
1994	2519	0.268	0.273	0.274
1995	2565	0.314	0.326	0.340
1996	2326	0.312	0.323	0.325
1997	2948	0.323	0.337	0.339
1998	2368	0.340	0.354	0.356
1999	2723	0.340	0.354	0.356
2000	2569	0.310	0.315	0.316
2001	2646	0.312	0.318	0.319
2002	2541	0.317	0.323	0.324
2003	2446	0.449	0.506	0.535
2004	2680	0.468	0.529	0.566
2005	2872	0.527	0.615	0.660
2006	2584	0.487	0.559	0.598
2007	2228	0.446	0.494	0.558
2008	1972	0.422	0.458	0.485
2009	2048	0.498	0.583	0.629
2010	2010	0.414	0.444	0.471
2011	2210	0.470	0.530	0.570
2012	1852	0.401	0.425	0.448
2013	1857	0.376	0.394	0.404
2014	2036	0.380	0.402	0.414
2015	1707	0.387	0.406	0.418
2016	1768	0.406	0.421	0.441
2017	1788	0.406	0.425	0.444
2018	1 661	0.396	0.411	0.430
2019	1 947	0.376	0.412	0.429

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to the assessment of the magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2017

• NMVOC emissions from bread manufacturing and particles from barbeque were recalculated for the whole time series.

2018

- Improvement of the time series consistency depends on the allocation of emissions under the NFRs and can be corrected when the time series recalculation is finalized. (Recommendation of the NECD 2017 Review for particles in 2015).
- Annual sugar production volumes are no more available from the industry due to the integration of
 the domestic plant into an international corporation. The production volumes have been updated for
 the whole time series using different data sources: (1) LUKE's beet production statistics) and (2)
 assumptions on raw material/production rates. It is assumed that for the production on one
 kilogramme of sugar 8 kilogrammes of sugar beet are needed (Dansukker website 25.10.2017). The
 updated method enables to follow the annual production rates in stead fo the constant figure used for
 the earlier years.

2019

 Between the 2018 and the 2019 submissions NMVOC emissions from alcoholic beverages were recalculated due to new information from Valvira (National Supervisory Authority for Welfare and Health

2021

 \bullet SO_x emissions in 2001-2 were reallocated under the Energy sector and the notation key was changed into NA for all years.

Source-specific planned improvements

- Particle emission fraction factors will be checked and Guidebook 2019 will be taken in use when available.
- NMVOC estimates for 1988-1989 will be checked

Other industrial processes (NFR 2H3)

No sources are included under NFR 2H3. Other industrial activities not falling under the NFR2 categories are reported under NFR 2L "Other production, consumption, storage, transportation or handling of bulk products".

Changes in chapter	•
February 2021	KS JMP

Source category description

Activities reported under NFR 2I include mechanical wood processing, such as sawmills and production of plywood, chipboard and fibreboard.

Emission trends

Emission trends are presented in Figure 4.42.

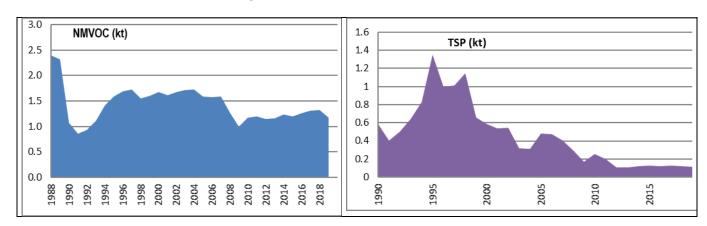


Figure 4.42 NMVOC and particle emission trends from 21

Mechanical wood processing is a minor source of several air pollutants as presented in Table 4.99.

Table 4.99 Contribution of Mechanical wood processing (NFR 2I) to total emissions in 2019.

Pollutant	Emissions from mechanical wood processing	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	1,17	84.522	Gg	1,4	33.6
PM _{2.5}	<0.001	16.622	Gg	<0.1	0
PM ₁₀	0,021	30.034	Gg	<0.1	0
TSP	0,111	44.952	Gg	0,2	100

Methodological issues

Particle emissions

The plants report total suspended particle according to monitoring requirements in their environmental permits and this data is available in VAHTI. PM_{10} and $PM_{2.5}$ emissions are calculated from TSP emissions with a fraction factor for PM_{10} of 18% and for $PM_{2.5}$ 0% (zero) according to information from US EPA Air Chief database. Due to the separation process of fuel and non-fuel-based emissions in the inventory reporting system IPTJ, small part (0.03 kt) of the fuel-based $PM_{2.5}$ emissions was allocated to NFR 2I. The allocation will be checked to the next submission.

NMVOC emissions

NMVOC emissions from mechanical wood industry are calculated with activity data from Finnish Forest Federation (FFIF) and emission factors from NPI and FFIF presented in Tables 4.100 a and b. In addition, NMVOCs are reported by several plants according their monitoring requirements to supervising authorities and available in YLVA database.

Table 4.100a NMVOC emission factors and activity data for wood processing industries

NOTE: * since 2013 chipboard and fibreboard manufacture volumes are in included in the plywood manufacture volumes

Year	Production of chipboard (FFIF	yearbook)	Year	Production of sawn timber (from FFIF yearbook)	
EF 0.2 kg/m³ (NPI; 2002) Emissions (t)		Emission factor 235 g (dry matter)/t of sawn timber (FFIF, 2005)		Emissions (t)	
1988	650 000 m ³	130	1988	3 239 000 t	761
1989	650 000 m ³	130	1989	3 239 000 t	761
1990	600 000 m ³	120	1990	3 075 000 t	723
1991	385 000 m ³	77	1991	2 634 250 t	619
1992	354 000 m ³	71	1992	2 984 800 t	701
1993	439 000 m ³	88	1993	3 485 000 t	819
1994	477 000 m ³	95	1994	4 190 200 t	985
1995	485 000 m ³	97	1995	4 042 600 t	950
1996	498 000 m ³	100	1996	3 981 100 t	936
1997	475 000 m ³	95	1997	4 655 550 t	1094
1998	455 000 m ³	91	1998	5 017 170 t	1179
1999	439 000 m ³	88	1999	5 210 280 t	1224
2000	462 000 m ³	92	2000	5 461 200 t	1283
2001	430 000 m ³	86	2001	5 194 700 t	1221
2002	410 000 m ³	82	2002	5 453 000 t	1281
2003	400 000 m ³	80	2003	5 576 000 t	1310
2004	448 000 m ³	90	2004	5 518 600 t	1297
2005	452 000 m ³	90	2005	4 997 900 t	1175
2006	400 000 m ³	88	2006	4 961 000 t	1170
2007	400 000 m ³	80	2007	5 084 000 t	1195
2008	250 000 m ³	50	2008	4 018 000 t	944
2009	170 000 m ³	34	2009	3 280 000 t	771
2010	220 000 m ³	44	2010	3 854 000 t	906
2011	170 000 m ³	34	2011	3 977 000 t	935
2012	100 000 m3	20	2012	3 813 000 t	896
2013	*	*	2013	4 264 000 t	1 002
2014	*	*	2014	4 469 000 t	1 050
2015	*	*	2015	4 346 000 t	1 021
2016	*	*	2016	4 653 500t	1 094
2017	*	*	2017	4 797 000t	1 127
2018	*	*	2018	4 842 100t	1 138
2019	*	*	2019	4 653 500t	1 094

Table 4.100b NMVOC emission factors and activity data for wood processing industries

NOTE: * since 2013 chipboard and fibreboard manufacture volumes are in included in the plywood manufacture volumes

Production of plywood (FIFF yearbook)				
Emissi 1999)	on factor 0.15 kg/m³ (NPI	Emissions (t)		
1988	600 000 m ³	90		
1989	600 000 m ³	90		
1990	650 000 m ³	98		
1991	477 000 m ³	72		
1992	462 000 m ³	69		
1993	621 000 m ³	93		
1994	700 000 m ³	105		
1995	778 000 m ³	117		
1996	869 000 m ³	130		
1997	987 000 m ³	148		
1998	992 000 m ³	149		
1999	1 076 000 m ³	161		
2000	1 167 000 m ³	175		
2001	1 140 000 m ³	171		

Product	Production of fibreboard (FiFF Yearbook)				
Emission	Emission factor 1.3 kg/m³ (NPI 1999)				
1988	90 000 m³	117			
1989	80 000 m ³	104			
1990	100 000 m³	130			
1991	69 000 m ³	90			
1992	73 000 m ³	95			
1993	85 000 m ³	111			
1994	86 000 m ³	112			
1995	79 000 m ³	103			
1996	77 000 m³	100			
1997	88 000 m ³	114			
1998	100 000 m³	130			
1999	96 000 m³	125			
2000	100 000 m³	130			
2001	109 000 m³	142			

2002	1 240 000 m ³	186
2003	1 300 000 m ³	195
2004	1 350 000 m ³	203
2005	1 305 000 m ³	196
2006	1 400 000 m ³	212
2007	1 410 000 m ³	212
2008	1 265 000 m ³	190
2009	780 000 m ³	117
2010	980 000 m ³	147
2011	1 040 000 m ³	156
2012	1 000 000 m ³	150
2013	1 090 000 m ³	164
2014	1 160 000 m ³	174
2015	1 150 000 m ³	173
2016	1 150 000 m ³	173
2017	1 250 000 m ³	188
2018	1 230 000 m ³	185
2019	1 100 000 m ³	165

2002	101 000 m ³	131
2003	100 000 m³	130
2004	102 000 m ³	133
2005	101 000 m ³	131
2006	100 000 m ³	108
2007	75 000 m ³	98
2008	66 000 m ³	86
2009	46 000 m ³	60
2010	57 000 m ³	74
2011	60 000 m ³	78
2012	60 000 m ³	78
2013	*	*
2014	*	*
2015	*	*
2016	*	*
2017	*	*
2018	*	*
2019	*	*

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Part 3 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to assessment of magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

None.

Source-specific planned improvements

None.

Production of POPs (NFR 2J)

There is no production of POPs in Finland.

Consumption of POPs and heavy metals (NFR 2K)

Changes in chapt	er
February 2021	KS JMP

We consider the methods presented in the Guidebook for PCB and Hg emissions from consumption of POPs and heavy metals to highly overestimate the emission levels in Finland and thus to not be applicable for Finnish conditions.

In Finland, use of PCBs in open systems was banned already in the 1970s and PCB containing products have been banned since the 1990s.

Mercury releases from products is mostly a waste management issue and mercury containing products have been regarded as hazardous waste and treated as such already in the 1990's. Mercury in products has been restricted since the 2000's due to national legislation concerning Hg in products (batteries, electrical, measurement/control devices, lighting, paint, amalgam) and waste management of such products. Finland is party to international mercury agreements such as the EU regulations on restricting/banning Hg use in products and the recent Minamata Convention.

Emissions from consumption of F-gases are available from the Finnish greenhouse gas inventory available at http://www.stat.fi/til/khki/index_en.html

3.41 Other industrial production including production, consumption, storage, transportation or handling of bulk products (NFR 2L)

Changes in chapter				
February 2021	KS JMP			

Source category description

Activities reported under NFR 2L "Other sector" are presented in Table 4.101 This sector includes emissions from tile, light gravel, talc, gypsum products and ceramic household and decorative products manufacturing, quarrying and crushing, manufacturing of electricity distribution and monitoring devices and starch modification. No emissions are reported under NFR 2H3.

Table 4.101 Activites and emissions reported under NFR 2L Other

SNAP code	SNAP	Detailed description	Emissions reported			
040617	Other	Light gravel manufacturing				
040617	Other	Talc manufacturing				
040617	Other	Ceramic household and decorative products				
040017	Other	manufacturing				
040617	Other	Tile (brick) manufacturing	NMVOC, SO _x , NH ₃ , TSP, PM ₁₀ , PM _{2.5} , PCDD/F			
040617	Other	Gypsum product manufacturing	NIVIVOC, 30 _x , INI _{13,} 13F, FIVI ₁₀ , FIVI _{2.5} , FCDD/F			
040617	Other	Quarrying and crushing				
040617	Other	Manufacturing of electricity distribution and monitoring				
040017	devices					
040617	Other	Starch modification				
		Animal feed production				

The annual variations in the emissions are caused by fluctuation of production or the activity volume over the years. The shares of emissions of total emissions and shares of data reported by the plants are presented in Table 4.102

Table 4.102 Contribution of Other production, consumption, storage, transportation or handling of bulk products (NFR 2L) to total emissions in 2019.

Pollutant	Emissions from other	Total emissions	Unit	Share of total emissions %	% reported by the
	processes				plants
NMVOC	0.002	84.522	Gg	<0.1	100
SO _x (as SO ₂)	<0.001	28.937	Gg	<0.1	100
NH ₃	0.006	31.593	Gg	<0.1	100
PM _{2.5}	0.006	16.622	Gg	<0.1	0
PM ₁₀	0.009	30.034	Gg	<0.1	0
TSP	0.012	44.952	Gg	<0.1	100
PCDD/ PCDF	0.009	12.132	g I-Teq	<0.1	0

Methodological issues

Emissions are mainly reported by the plants according to the monitoring requirements in the environmental permits. When no plant specific data is available emissions has been calculated.

NMVOC, SOx, and particles

Emissions are based on emission data reported by the plants and available in YLVA database.

PCDD/F

Emissions from the production of bricks are calculated using the emission factor 87 ng I-TEQ/ t (UNEP, 1999) and activity data presented in Table 4.103. It is assumed that one brick weights 3 kg.

Table 4.103 Activity data for brick production (Confederation of Finnish Construction Industries)

Year	Production of Bricks (t)	Year	Production of Bricks (t)	Year	Production of Bricks (t)
1990	339 000	2000	188 715	2010	111 600
1991	270 000	2001	183 000	2011	108 900
1992	198 000	2002	171 000	2012	100 994
1993	183 000	2003	174 000	2013	100 994*
1994	171 000	2004	177 000	2014	100 994*
1995	156 000	2005	162 000	2015	100 994*
1996	120 000	2006	156 000	2016	100 994*
1997	219 270	2007	143 700	2017	100 994*
1998	200 145	2008	129 000	2018	100 994*
1999	194 430	2009	91 500	2019	100 994*

^{*}due the lack of data, years 2012 activity data is used also for years 2013-2019

Calculated emissions dioxin and furines (PCDD/PCDF) from other industrial production sector are presented in Table 4.104

Table 4.104 PCDD/F emissions from other industrial production

Year	PCDD/F (q I-TEQ)	Year	PCDD/F (q I-TEQ)	Year	PCDD/F (q I-TEQ)
1990	0.0295	2000	0.0164	2010	0.0097
1991	0.0235	2001	0.0159	2011	0.0095
1992	0.0172	2002	0.0149	2012	0.0088
1993	0.0159	2003	0.0151	2013	0.0088
1994	0.0149	2004	0.0154	2014	0.0088
1995	0.0136	2005	0.0141	2015	0.0088
1996	0.0104	2006	0.0136	2016	0.0088
1997	0.0191	2007	0.0125	2017	0.0088
1998	0.0174	2008	0.0112	2018	0.0088
1999	0.0169	2009	0.0080	2019	0.0088

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to the assessment of the magnitude and trends has been carried out. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

None.

Source-specific planned improvements

2022

• Brick production activity data sources for years after 2012 will be studied.