FINLAND's INFORMATIVE INVENTORY REPORT 2020

Air Pollutant Emissions 1980-2018 under the UNECE CLRTAP and the EU NECD

Part 6 - Waste

FINNISH ENVIRONMENT INSTITUTE Centre for Sustainable Consumption and Production Environmental Management in Industry – Air Emissions Finland's IIR Part 6 Waste Sector

. .

Cover page picture: Lynx (MEK 2019)

IIR - PART 6 - WASTE

6 WASTE (NFR 5)

- 6.1 Source category description
- 6.2 Solid waste disposal on land
- 6.3 Composting
- 6.4 Anaerobic digestion at biogas facilities
- 6.5 Waste Incineration (NFR 5C)
 - Municipal waste incineration Industrial waste incineration including hazardous waste and sewage sludge Clinical waste incineration Cremation
- 6.6 Wastewater Handling (NFR 5D1, 5D2 and 5D3) Domestic wastewater handling Industrial wastewater handling
- 6.7 Other Waste (NFR 5E)

Sub-chapters included under each NFR subcategory

Source category description Emission trend Methodological issues Uncertainty and time series' consistency Source-specific QA/QC and verification Source-specific recalculations including changes in response to the review Source-specific planned improvements

6 WASTE (NFR 5)

Changes in chapterMarch 2020KS. JP. JMP

6.1 Source category description

Emissions from solid waste disposal on land (landfills), waste incineration, waste water treatment composting, cremation and other waste (house and car fires, latrines) are included in under the Waste sector inventory as presented in Table 6.1.

Emissions from waste incineration are reported under NFR 1A1a or NFR 1A2gviii because all waste incineration occurring in Finland is with energy recovery. However, documentation on the methods used is presented under Waste Incineration 5C,

Air pollutant emission levels from the waste sector are minor compared to the levels of greenhouse gases.

NFR	Processes	Description	Emissions reported
5 A	Biological treatment of waste – Solid waste disposal on land	solid municipal, industrial, construction and demolition wastes	NMVOC, TSP PM10, PM2.5
5 B 1	Biological treatment of waste - Composting	biowaste, municipal solid waste, municpal and industrial sludges and industrial solid waste	NH3
5 B 2	Biological treatment of waste – Anaerobic digestion at biogas facilities	few biogas reactors in Finland.	-
5C1a	Municipal waste incineration	No waste incineration occurs, all waste is	-
5 C 1 bi	Industrial waste incineration	combusted with energy recovery	-
5 C 1 bii	Hazardous waste incineration	IE, emissions are allocated under energy sector, all waste incineration includes energy recovery	all
5 C 1 biii	Clinical waste incineration	Waste incineration occurred only in 1990- 1993, all waste is combusted with energy recovery thereafter	-
5 C 1 biv	Sewage sludge incineration	No waste incineration occurs, all waste is combusted with energy recovery	-
5 C 1 bv	Cremation	part of emissions IE (under 1A1)	PM2,5, PM10, TSP, BC, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn, PCDD/PCDF, PAH-4, PCB, BC
5 C 1 bvi	Other waste incineration	No waste incineration occurs, all waste is combusted with energy recovery	-
5 C 2	Open burning of waste	Not Occuring	-
5 D 1	Domestic wastewater handling	wastewater handling, domestic	NMVOC, NH3
5 D 2	Industrial wastewater handling	wastewater hanglind, industrial	NMVOC
5 D 3	Other wastewater handling	Not Occuring	-
5 E	Other waste	car and house fires, latrines	NH ₃ , PM2,5,PM10,TSP, BC, Pb, Cd, Hg, As,Cr, Cu, PCDD/PCDF

Table 6.1 Emission categories and reported emissions under NFR 5 in 2018

Information on population as background data is presented in Table 6.2 for both urban and total population.

Year	Total population	Urban population	Year	Total population	Urban population
1990	4998478	3095607	2006	5276955	3519288
1991	5029002	3127655	2007	5300484	3547955
1992	5054982	3153984	2008	5326314	3583254
1993	5077912	3182285	2009	5351427	3613215
1994	5098754	3211868	2010	5375276	3641874
1995	5116826	3242380	2011	5401267	3674047
1996	5132320	3267456	2012	5426674	3708852
1997	5147349	3294625	2013	5451270	3741991
1998	5159646	3320011	2014	5471753	3772872
1999	5171302	3347508	2015	5487308	3797978
2000	5181115	3372096	2016	5503297	3829719
2001	5194901	3401057	2017	5513130	3856747
2002	5206295	3423255	2018	5517919	3881481
2003	5219732	3444416			
2004	5236611	3467411			
2005	5255580	3491993			

Table 6.2 Background data (total population and population in urban areas) related to the waste sectors in 1990-2018 (Statistic Finland, 2020).

6.2 Solid waste disposal on land (NFR 5A)

Changes in chapter	
March 2020	KS. JMP

Source category description

Under NFR 5A Finland reports NMVOC emissions from disposal of solid municipal, industrial, construction and demolition wastes, as well as municipal (domestic) and industrial sludges. The emission reporting under the UNECE CLRTAP, the EU NECD and the UNFCCC are consistent.

The energy produced in waste incineration is utilised and the emissions are therefore reported in the Energy sector. Implementation of landfill gas recovery has also had a significant decreasing impact on the emissions.

Emission trend

After the implementation of the revised Waste Act (1994) and the Landfill Directive (1999/31/EC) minimisation of waste generation, recycling and reuse of waste material, landfill gas recovery and alternative treatment methods to landfills have been endorsed. Similar developments have occurred in the treatment of industrial waste, and municipal and industrial sludges. While the emissions from solid waste disposal on lands have decreased, the emissions from composting have increased until 2007 where after the changes in the emissions have been small. In addition, the increase of waste incineration has decreased the emissions from landfills from 2008 onwards.

NMVOC and particle emissions from NFR 5A are presented in Figures 6.1a and 6.1b. For the years 1988 and 1989 NMVOC emissions can be overestimated.

Figure 6.1a NMVOC emissions and Figure 6.1b particle emissions reported under NFR 5A

Methodological issues

Contribution of NFR 5A to total emissions and the shares of emissions reported by the plants are presented in Table 6.3

Table 6.3 Contribution of Biological treatment of waste – solid waste disposal on land (NFR 5A) to total emissions in 2018.

Pollutant	Emissions from solid waste disposal on land	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	0,079	85.317.	Gg	<0.1	0
PM2.5	<0.001	17.798.	Gg	<0.1	0
PM10	<0.001	31.116	Gg	<0.1	0
TSP	0.001	45.069	Gg	<0.1	0

NMVOC emissions

NMVOC emissions from solid waste disposal on land are calculated using the same method as in calculation of greenhouse gases described in the Finnish NIR (<u>http://www.stat.fi/tup/khkinv/khkaasut_raportointi_en.html</u>), where methane emissions and the volume of landfill gas have been calculated using the First Order Decay (FOD) method.

The calculation of NMVOC emissions is based on the NMVOC concentration in landfill gas taking into account the recovery rate and other reductions. NMVOC concentration in the landfill gas is assumed to be 485 mg/m³ (Myllyperkiö, 2005) based on the average of studies carried out in the US in 1998, in Germany in 1999 and in Finland in 1990, and has been estimated to correspond sufficiently to the Finnish conditions. The volume of landfill gas is derived from the density of methane (0.718 kg/m³) and from the fraction of CH4 in landfill gas (0.5)

Activity data

The total amount of waste taken to landfills from 1997 onwards is used as activity data in the calculation of methane emissions. This activity data is available in VAHTI and includes information on all landfills in Finland excluding the Aland territory, for which an estimate according to the population is used. The waste amount data are registered according to the EWC (European Waste Catalogue) classification (both EWC 1997 and EWC 2002). Sampling routines have been developed to convert the classification used in VAHTI to the classification used in the emission estimations. Corresponding data (but with volume units and the waste classification is less detailed) for the years 1992-1996 were collected to the Landfill Registry of the Finnish Environment Institute. The activity data for municipal waste for the year 1990 are based on the estimates of the Advisory Board for Waste Management (1992) for municipal solid waste generation and treatment in Finland in 1989 with the correction of double counting in paper waste. The disposal data (amount and composition) at the beginning of the 1990's for industrial, construction and demolition waste are based on surveys and research by Statistics Finland (Isaksson 1993; Puolamaa et al., 1995), VTT Technical Research Centre of Finland (Perälä & Nippala 1998; Pipatti et al. 1996) and the National Board of Waters and the Environment (Karhu 1993). For base year activity data Isaksson (1993) and Pipatti et al. (1996) are used for construction and demolition waste. Karhu (1993) is used for industrial sludges and Puolamaa et al. (1995) is used for solid industrial waste. (Finland's GHG NIR. 2017)

The amount of landfilled waste in 1990-2017 is presented in Table 6.4 and additional background data in Table 6.5.

Table 6.4 Landfilled waste (1 000 t).

Sources: YLVA database, Landfill Registry of the Finnish Environment Institute. Advisory Board for Waste Management 1992, Vahvelainen & Isaksson 1992, Isaksson 1993, Pipatti et al. 1996, Puolamaa et al. 1995, Perälä & Nippala 1998, Karhu 1993. Directly or indirectly interpolated values are presented in italics).(Finland's NIR, 2020)

Waste group	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Municipal solid waste	2 400	2 230	2 070	1 909	1 725	1 682	1 599	1 535	1	1 586
Municipal sludge (d.m.)	47	48	48	47	46	25	21	7	6	5
Municipal sludge (wet m.)	498	504	510	505	501	298	212	84	71	67
Industrial sludge (d.m.)	337	318	299	285	268	260	248	229	182	140
Industrial sludge (wet m.)	1 193	1 129	1 065	999	935	881	790	695	606	559
Industrial solid waste	2 135	2 107	2 079	1 892	1 706	1 519	1 332	1 146	1	2 316
Constr. and demol. waste	1 262	1 1 1 0	781	667	639	637	567	540	438	415

Waste group	2000	2001	2002	2003		200)4	2005	2006	2007	2008	2009
Municipal solid waste	1 602	1 542	1 507	1 488	}	142	23	1 462	1 485	1 411	1	1 128
Municipal sludge (d.m.)	6	8	6	6		6		6	5	4	4	3
Municipal sludge (wet m.)	70	79	66	63		58	3	53	51	39	27	26
Industrial sludge (d.m.)	118	97	65	42		29)	48	44	32	15	18
Industrial sludge (wet m.)	550	329	209	198		12	7	161	144	119	49	55
Industrial solid waste	2 390	2 659	2 562	3 041		4 78	81	4 682	5 142	2 996	3	3 570
Constr. and demol. waste	454	457	377	401		37	3	390	353	336	331	229
Waste group	2010	2011	2012	2013	201	4 2	015	2016	2017	2018		
Municipal solid waste	1095	1033	885	685	451	3	318	78	19	16		
Municipal sludge (d.m.)	3	2	3	3	2		5	1	0.2	0.1		
Municipal sludge (wet m.)	22	23	22	22	17		14	7	3	2		
Industrial sludge (d.m.)	26	27	32	32	19		7	3	4	3		
Industrial sludge (wet m.)	82	78	96	94	42		20	10	10	8		
Industrial solid waste	2661	2742	3312	3175	307	4 2	900	2841	2571	2604		
Constr. and demol. waste	342	240	241	196	180) ′	162	102	108	107		

Table 6.5 Additional background data (Finland's NIR, 2017)

Description	Value	Unit
Waste generation rate	1.39	kg/capita/day
Fraction of MSW disposed to SWDS	32	%

Particle emissions

Particle emissions are calculated using the default emission factors from the EMEP/EEA Emission Inventory Guidebook 2016 and landfilled waste amounts (municipal and industrial solid waste and construction and demolition waste) presented in Table 6.6

Table 6.6 Calculated particle emissions from solid waste disposal on land 1990-2018

Year	TSP (t)	PM10 (t)	PM2.5 (t)	Year	TSP (t)	PM10 (t)	PM2.5 (t)
1990	2.6	1.2	0.2	2005	2.8	1.3	0.2
1991	2.5	1.2	0.2	2006	3.0	1.4	0.2
1992	2.2	1.1	0.2	2007	1.9	0.9	0.1
1993	2.0	0.9	0.1	2008	2.1	1.0	0.2
1994	1.8	0.9	0.1	2009	2.0	1.0	0.1
1995	1.7	0.8	0.1	2010	1.8	0.9	0.1
1996	1.6	0.7	0.1	2011	1.8	0.8	0.1
1997	1.4	0.7	0.1	2012	1.9	0.9	0.1
1998	1.4	0.6	0.1	2013	1.7	0.8	0.1
1999	1.8	0.8	0.1	2014	1.6	0.7	0.1
2000	1.9	0.9	0.1	2015	1.4	0.7	0.1
2001	2.0	0.9	0.1	2016	1.2	0.6	0.1
2002	1.9	0.9	0.1	2017	1.1	0.5	0.1
2003	2.2	1.0	0.2	2018	1.1	0.5	0.1
2004	2.8	1.3	0.2				

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied since the 2012 submission. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2018

- Particle emissions were included in the inventory due to the recommendation from the 2017 NECD Review.

2020

- NMVOC 2017 were recalculated due to update in activity data (minor decrease in emissions)

Source-specific planned improvements

None.

6.3 Composting (NFR 5B1)

Changes in chapterMarch 2020KS. JMP

Source category description

 NH_3 emissions from composting are included in the category from year 1990 onwards. The shares of emissions for each air pollutant reported under the NFR category are presented in Table 6.7

Table 6.7 Contribution of Biological treatment of waste - Composting (NFR 5B1) to total emissions in 2018.

Pollutant	Emissions from composting	Total emissions	Unit	Share of total emissions %	% reported by the plants
NH3	0.091	32.189	Gg	0,3	0

Emission trend

The NH3 emission trend (Figure 6.3) from composting increased after the early 1990's due to the increased composting especially in semi-urban areas, which results from separate collection of organic waste.

Figure 6.3 NH3 emissions from composting 1980-2018

Methodological issues

NH₃ emissions

The emission are calculated for the whole time series using the emission factor of 0.24 kg/Mg organic waste from the 2019 Guidebook. The activity data is presented Table 6.8 and the emissions in Tables 6.9.

Table 6.8 Composted waste with auxiliary matter in 1990-2018 by subcategory (1000 t). (Finland's NIR, 2019)

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Municipal solid waste	60	66	72	77	83	102	122	141	154	167
Municipal sludge (d.m.)	60	72	83	90	97	110	123	120	123	125
Industrial sludge (d.m.)	13	12	12	12	12	12	12	7	10	13
Industrial solid waste	12	13	14	16	17	18	19	21	24	28
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Municipal solid waste	180	190	199	209	218	233	232	289	284	281
Municipal sludge (d.m.)	128	131	133	136	138	159	160	151	155	142
Industrial sludge (d.m.)	15	18	21	23	26	32	36	42	33	33
Industrial solid waste	31	34	38	41	45	45	61	52	35	57
	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Municipal solid waste	304	319	304	317	317	247	217	231	213	
Municipal sludge (d.m.)	143	137	1121	128	120	113	95	102	102	
Industrial sludge (d.m.)	38	33	22	22	25	25	17	12	12	
Industrial solid waste	60	77	47	31	35	24	40	34	34	

Year	NH ₃ emission (kt)	Year	NH ₃ emission (kt)	Year	NH ₃ emission (kt)
1990	0.035	2000	0.085	2010	0.131
1991	0.039	2001	0.089	2011	0.136
1992	0.043	2002	0.094	2012	0.119
1993	0.047	2003	0.098	2013	0.120
1994	0.050	2004	0.102	2014	0.119
1995	0.058	2005	0.112	2015	0.098
1996	0.066	2006	0.117	2016	0.089
1997	0.070	2007	0.130	2017	0.091
1998	0.075	2008	0.122	2018	0.091
1999	0.080	2009	0.124		

Table 6.9 NH₃ emissions from composting 1990-2018

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR to be submitted by 1st May 2020.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied since the 2012 submission. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2009

- NH3 emissions from composting were included in the inventory

2016

- NMVOC emissions were recalculated for whole time series (1990 onwards) to be consistent with UNFCCC reporting.

2018

- NMVOC emissions were excluded from the inventory, because no default method is presented in the Guidebook and due to the recommendation of the 2017 NECD Review.
- The mistake in the calculation of NH3 emissions (incorrect amount of industrial solid waste in 2015, value was corrected from 35 to 24 kt) observed during the 2017 NECD Review was corrected. The impact of the mistake was far below the threshold of significance for a technical correction (2%).

2020

- For year 2017 the amounts of composted waste were updated resulting in minor increase in NH3 emissions. Due the lack of activity data the same amounts of composted waste were used for years 2017 and 2018.

Source-specific planned improvements

None.

6.4 Anaerobic digestion at biogas facilities (NFR 5B2)

Changes in chapter	
March 2020	KS JMP

Source category description

Finland reported earlier emissions from this category using a rough method based on the concentration of NMVOC in biogas (485 mg/m3, according to Myllyperkiö, 2006), derived from the average results of studies in the US 1998, Germany 1999 and Finland 1990. However, as there is no method in the Guidebook and the NECD TERT was not convinced of the validity of this method, the emissions have been removed. The earlier reported emissions are presented in Figure 6.4.

Figure 6.4 NMVOC emissions from NFR 5B2 1988-2016 (1988 is the base year for NMVOC) not included in the NFR as the method was not accepted by the NECD TERT,

Source category description

In 2016 the amount of biogas produced by the reactor installations was 77.6 million m³ and the combustion of surplus biogas 7.4 million m³. Production of thermal, electrical and mechanical energy was 382.9 GWh. The following facilities were in use in 2016: 16 biogas reactor plants at municipal wastewater treatment plants, 3 anaerobic industrial wastewater treatment plants, 13 farm-scale biogas plants and 16 municipal solid waste biogas plants.

In 2016 there were 40 landfill gas recovery plants. The amount of recovered biogas was 78.5 million m³ out of which 60 million m3 was used for production of 239.7 GWh electrical and thermal energy

Source: Finnish national biogas statistics, University of Eastern Finland, ref. Huttunen M., J and Kuittinen V., 2017

Source-specific planned improvements

Ammonia

The 2019 NECD TERT noted that there may be an underestimate of NH3 emissions, as NH3 emissions are reported as NE, while the underestimate is not expected to have an impact on total emissions that is above the threshold of significance.

The Guidebook provides for a Tier 1 methodology using the "total annual amount of nitrogen in the feedstock entering the biogas plants". Unfortunately this AD (total annual amount of nitrogen in the feedstock) is not available in Finland. To obtain this data there is need to establish a project which could be possible earliest in 2022-2025. After studying the impact of the emissions, we have a strong understanding that emissions would be very low, far below the threshold of significance.

6.5 Waste Incineration (NFR 5C)

Changes in chapterMarch 2020KS JMP

Source category description

The amount of municipal waste at landfills is decreasing heavily. In 2012 the reduction was over onequarter from the previous year and the same rate seems to be continuing in 2013 as well. Only 670.000 tonnes of municipal waste was deposited at landfills in 2013. For example in 2008 the amount was still 1.400.000 tonnes. The co-combustion of waste with energy recovery is on the rise as can be seen from Table 6.10. If the current development continues, landfills for municipal waste will become history, as is already the case in many other European countries.

The number of waste co-combusting waste with energy recovery has been rapidly increasing since 1994 due to implementation of the revised Waste Act and the revision of the Environmental Protection Act.

All waste incineration in Finland includes energy recovery and the emissions are therefore reported under NFR 1A1a or NFR 1A2gviii.

Fable 6.10 Volume of incinerated wastes	(1000)) and number of cremate	d corpses in Finland
---	--------	-------------------------	----------------------

Waste and corpses burned	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Domestic and municipal wastes	60.0	70.6	74.9	76.5	91.6	84.5	81.8	114.2	142.1	196.8
Industrial wastes	4 000	4 000	4 000	4 000	4 500	5 000	5 000	5 435	7 206	4 561
Corpses	7 609	7 764	8 121	8 986	9 163	9 774	10 823	10 977	11 834	12 466
Waste and corpses burned	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Domestic and municipal wastes	221.2	229.6	189.4	222.8	235.9	226.8	222.3	310.4	360.0	463.0
Industrial wastes	5 970	5 774	5 052	4 042	7 129	6 813	7 339	7 339	7 339	7 339
Corpses	13 084	13391	14 354	14 847	15 508	16 108	16459	17 796	18 199	19 561
Waste and corpses burned	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Domestic and municipal wastes	463.0	679.0	679.0	679.0	1 137	1 312	1 515	1 192	1 424	
Industrial wastes	7 339	7 339	7 339	7 339	7 339	7339	7339	7339	7339	
Corpses	21068	21 540	22648	23702	24822	25631	27483	28336	29550	

Municipal waste incineration (NFR 5C1a)

Changes in chapterMarch 2020KS. JMP

Source category description

All waste incineration in Finland includes energy recovery and the emissions are reported under NFR 1A1a or NFR 1A2gviii.

Methodological issues

SO2. NOx. NMVOC. Particle, POP and heavy metal emissions

SO₂, NOx, NMVOC, particle and heavy metal emissions are reported by the plants according to the monitoring requirements in the environmental permits.

POP emissions

PCDD/F and PAH-4 emissions are reported by plants and included under the Energy sector.

HCB and PCB emissions (Table 6.11) are calculated using Guidebook 2019 emission factors and reported under 1A2gvii.

Year	HCB (kg)	PCB (kg)	Year	HCB (kg)	PCB (kg)
1990	0.135	0.141	2010	0.113	0.118
1991	0.135	0.141	2011	0.106	0.110
1992	0.135	0.141	2012	0.122	0.127
1993	0.140	0.141	2013	0.155	0.162
1994	0.012	0.158	2014	0.116	0.121
1995	0.080	0.176	2015	0.116	0.121
1996	0.095	0.176	2016	0.116	0.121
1997	0.012	0.191	2017	0.116	0.121
1998	0.200	0.193	2018	0.116	0.121
1999	0.055	0.160			
2000	0.329	0.210			
2001	0.218	0.203			
2002	0.283	0.178			
2003	0.208	0.142			
2004	0.117	0.205			
2005	0.219	0.148			
2006	0.105	0.122			
2007	0.124	0.129			
2008	0.200	0.209			
2009	0.116	1.41			

Table 6.11 POP emissions from waste incineration reported under the Energy sector

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied in the calculation of 2010 emissions.

Source-specific recalculations including changes made in response to the review Process

2015

- Emissions before 2011 were corrected by removing double values: NFR 5C1a to NE (includes emissions from WWTPs), the emissions were allocated under 5D1.

2016

- Ammonia, PCDD/F and PAH-4 emissions in 5C1a were revised for whole time series. In previous submissions Finland has reported emissions from clinical waste incineration (NFR 5C1 biii) although actually no incineration of clinical waste in hospital sites has occurred after the year 1993. At the end of 1993 the new Waste Act (1994) and Environment Protection Act came in force, where after clinical waste has been managed in larger toxic waste disposal plants or landfilled. In 2016 landfilling has been forbidden and all clinical waste has to be incinerated in waste incineration plants.
 - HCB, PCB and PCP from waste incineration were included in the inventory.

2018

- HCB and PCB emissions were recalculated using Guidebook 2016 emission factors for the whole time series
- The notation key for waste incineration NFR categories were changed to NO

2020

- update of emission factors for HCB and PCB according to Guidebook 2019

Source-specific planned improvements

None.

Industrial waste incineration including hazardous waste and sewage sludge (NFR 5C1b)

Changes in chapter				
March 2020 KS. JMP				

Source category description

All waste incineration in Finland includes energy recovery. The emissions are reported under NFR 1A1a or NFR 1A2gviii.

Methodological issues

SO₂. NOx. NMVOC. Particle, POP and heavy metal emissions

SO₂, NOx, NMVOC, particle and heavy metal emissions are reported by the plants according to the monitoring requirements in the environmental permits in the VAHTI database.

POP emissions

PCDD/F, PAH-4, PCB and HCB emissions are partly reported by the plants and have been completed with calculated emission data for those plants that do not report their emissions to the supervising authorities.

Revision of the calculation of HCB emissions

HCB emissions were earlier calculated from the total volume of incinerated industrial waste. In the revised calculation carried out for the 2018 submission, HCB emissions are calculated for industrial sludges using the emission factor provided in the Guidebook 2016 (Table 6.13).

The assumptions made for PCB containing sludges presented below are also assumed for HCB containing sludges and the calculation follows that of PCB emissions.

Revision of the calculation of PCB emissions

PCB emissions were earlier calculated from the total volume of incinerated industrial waste. In the revised time series PCB emissions are reported by the plants according to their environmental permit conditions for the years 1993-2006. For the remaining years the emissions are completed by calculated emissions using the EMEP EEA Guidebook 2016 emission factors. The method to calculate emissions will be reconsidered for the next submission taking into account the possibility of using national EFs instead of Guidebook EFs.

Amounts of incinerated industrial sludges are presented in Table 6.12 (source Statistics Finland for years 2004-2006 and for 2008-2013).

For years 1990-2003, 2007 and from 2014 onwards there is no official statistics available, that's why in the calculation it is assumed that 20% of the total incinerated industrial waste amounts were industrial sludges. According to an expert estimate (Espo, 2018) 10% of industrial sludges contains

PCB for years 1990-2004, from 2005 onwards the percentage of PCBs containing sludges is 5 %. All PCBs containing sludges are incinerated in waste incineration plants. The accuracy and relevancy of the method will be further studied for the next submission and the use of emission factors derived from data reported by the plants will be studied.

	Incinerated industrial waste	Industrial sludges (t)	Incinerated sludge (t)	Incinerated sludge
	(t)	(Statistics Finland)		containing PCB/HCB (t)
1990	1200000	-	299288	29929
1991	1200000	-	299288	29929
1992	1200000	-	299288	29929
1993	1200000	-	299288	29929
1994	1350000	-	336699	33670
1995	1500000	-	374110	37411
1996	1500000	-	374110	37411
1997	1630500	-	406658	40666
1998	1650000	-	411521	41152
1999	1368300	-	341263	34126
2000	1791000	-	446687	44669
2001	1732110	-	432000	43200
2002	1515495	-	377975	37797
2003	1212504	-	302407	30241
2004	2138841	437200	437200	43720
2005	2043758	631700	631700	31585
2006	2201553	520400	520400	26020
2007	2201553	-	549082	27454
2008	2069170	888000	888000	44400
2009	2069170	516000	516000	25800
2010	2069170	503000	503000	25150
2011	2069170	470000	470000	23500
2012	2069170	542 000	542000	27100
2013	2069170	690027	690027	34501
2014	2069170	-	516065	25803
2015	2069170	-	516065	25803
2016	2069170	-	516065	25803
2017	2069170	-	516065	25803
2018	2069170	-	516065	25803

Table 6.12 Amounts of incinerated industrial waste and industrial sludges (t) (Statistics Finland, 2020)

Table 6.13 HCB and PCB emissions from industrial waste incineration

Year	HCB (kg)	PCB (kg)	Year	HCB (kg)	PCB (kg)
1990	0.135	0.141	2010	0.113	0.118
1991	0.135	0.141	2011	0.106	0.110
1992	0.135	0.141	2012	0.122	0.127
1993	0.140	0.141	2013	0.155	0.162
1994	0.012	0.158	2014	0.116	0.121
1995	0.080	0.176	2015	0.116	0.121
1996	0.095	0.176	2016	0.116	0.121
1997	0.012	0.191	2017	0.116	0.121
1998	0.200	0.193	2018	0.116	0.121
1999	0.055	0.160			
2000	0.329	0.210			

2001	0.218	0.203		
2002	0.283	0.178		
2003	0.208	0.142		
2004	0.117	0.205		
2005	0.219	0.148		
2006	0.105	0.122		
2007	0.124	0.129		
2008	0.200	0.209		
2009	0.116	0.121		

PCDD/F and PAH-4

The emissions are reported by the operators.

PCP

Emissions from hazardous waste incineration are based on data reported by the operators

Emission factors for municipal waste incineration were derived at SYKE from emission data available from VAHTI as a mean of the annual emission rates at hazardous waste incineration facilities. The first emission factor (233.6 mg/t) is used for the years 1990-2001, except for the biggest incineration plant which improved its technology in 1994. The revised emission factor (4.5 mg/t) for this plant was used after 1994. The emission factor that is used for the other plants for the more recent years (2002-2011) is 67.4 mg/t, since the abatement techniques and limit values for waste incineration have been improved in the 2000's. The change in the emission factor results in large variations in the calculated PCP emissions but the use of the same emission factor throughout the whole time series would either underestimate the emissions in the early 1990's or overestimate emissions in the recent years.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied in the calculation of 2010 emissions.

Source-specific recalculations including changes made in response to the review Process

2018

-HCB and PCB emissions recalculation using Guidebook 2016 methods

Source-specific planned improvements

2022-2025

The possibility to develop national emission factors for the calculation of HCB and PCB emissions will be further studied.

Changes in chapterMarch 2020KS. JMP

Source category description

Clinical waste incineration occurred in Finland until 1994, where after clinical waste incineration units were closed down. Thereafter was treated in a large toxic waste disposal plant or landfilled. From 2016 onwards clinical waste has been co-combusted in energy production plants. Thus, emissions prior to 1994 are reported under NFR 5C1biii and from the year 1994 onwards under NFR 1A1a or 1A2gviii.

The allocation of emissions was changed in the 2018 submission because all waste incineration in Finland has included energy recovery after the year 1993. This is due to the implementation of the 1994 Waste Act and the revised Environmental Protection Act, which came into force and resulted in a change also regarding clinical waste management. According to the legislation clinical waste had to be managed in larger toxic waste disposal plants or landfilled, and in 2016 landfilling was also forbidden.

Methodological issues

Activity data

Activity data is an assumption based on an expert estimate (SYKE/Merilehto Kirsi, 2000 Table 6.14 above).

Year	waste amount
1990	10 000 t
1991	10 000 t
1992	10 000 t
1993	10 000 t

Table 6.14. Volume of incinerated clinical waste since 1990 (expert estimate, Merilehto 2000)

Emission factors

Heavy metals emissions from 1990-1993 are reported by the plants according to the monitoring requirements in the environmental permits. When no plant specific data is available, the emissions have been estimated.

POP compounds

PCDD/F, PAH4, HCB and PCB emissions for the years 1990-1993 are calculated with the following emission factors, which are assumed to be more suitable for the Finnish conditions in early 1990's than the Guidebook 2016 EFs. The EFs in the 2016 Guidebook are presented in the brackets.

PCDD/ F	7 µg I-TEQ	/t (SYKE, 2001) (GB16 40 mg I-TEQ/Mg)
PAH-4	20 mg/t	(EEA, 2002) (GB16 0.04 mg/Mg)
HCB	2.9 mg/t	(Bailey, 2001) (GB16 0.1 g/Mg)
PCB	C C	20 mg/t (GB 2016)

Emissions from clinical waste incineration 1990-1993 are presented in Table 6.16

Table 6.16 HCB, PCB, PCCD/Fs and PAH emissions from clinical waste incineration 1990-1993

Year	HCB (kg)	PCB (kg)	PCDD/PCDF (ug I-TEQ)	
1990	0.029	0.2	0.07	
1991	0.029	0.2	0.07	
1992	0.029	0.2	0.07	
1993	0.029	0.2	0.07	
Year	B(a)P (kg)	B(b)F (kg)	B(k)F (kg)	l(1,2,3-cd)P (kg)
1990	0.05	0.05	0.05	0.05
1991	0.05	0.05	0.05	0.05
1992	0.05	0.05	0.05	0.05
1993	0.05	0.05	0.05	0.05

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied since the 2012 submission.

Source-specific recalculations including changes made in response to the review Process

2016

- Emissions from year 1994 onwards were included in NFR 5Ca1. In the 1990-2015 submissions emissions from clinical waste incineration (NFR 5C1 biii) were erroneously reported although no incineration of clinical waste occurred at hospital sites after the year 1993.

2018

- The notation key was changed to "NO" from 1994 onwards

Source-specific planned improvements

None.

Cremation (NFR 5C1bv)

Changes in chapt	er
March 2020	KS

Source category description and explanation of emission trends

Emissions from cremation are calculated for mercury from 1990 onwards. The shares of emissions for each pollutant reported under the NFR category are presented in Table 6.17.

Pollutant	Emissions from cremation	Total emissions	Unit	Share of total emissions %	% reported by the plants
PM2.5	0.001	17.798	Gg	<0.1	0
PM10	0.001	31.116	Gg	<0.1	0
TSP	0,001	45.069	Gg	<0.1	0
BC	<0.001	4.014	Gg	<0.1	0
Pb	<0.001	15.410	Mg	<0.1	0
Cd	<0.001	0.883	Mg	<0.1	0
Hg	0,018	0.677	Mg	2,6	0
As	<0.001	2.415	Mg	<0.1	0
Cr	<0.001	15.344	Mg	<0.1	0
Cu	<0.001	40.173	Mg	<0.1	0
Ni	<0.001	14.139	Mg	<0.1	0
Se	<0.001	0.472	Mg	0.1	0
Zn	0,005	118.644	Mg	<0.1	0
PCDD/F	<0.001	14.356	g I-Teq	<0.1	0
PAHs	<0.001	9.991	Mg	<0.1	0
НСВ	0,004	32.024	kg	<0.1	0
PCBs	0,012	26.346	kg	<0.1	0

Table 6.17 Contribution of Cremation (NFR 5C1bv) to total emissions in 2018.

Methodological issues

Mercury emissions from crematoria

Cremation was not common in Finland in the 1990's and the number of cremations has gradually been increasing only since the beginning of the 2000's (Figure 6.5). Due to the low number of cremations, the first abatement technique (activated carbon filters) in a crematorium was installed first in 2013. In 2020 activated carbon filters are used in seven out of the thirteen existing crematoria, while there is no abatement technique in the rest of the crematoria. The numbers of cremations each year in each of these 13 crematoria are available from the association of Finnish Congregations.

The use of amalgam in dental fillings has been low before the 1950's in Finland and then it has decreased again since the early 2000's to almost zero today, being in 2013 only 3% of all fillings. In 2018 a ban of amalgam was stipulated for persons of 15 years old or younger as well as for pregnant women. Most amalgam fillings in teeth have those born in 1940-1950, i.e. those currently older than 65 years.

In the calculation, the population numbers from 1990 have been divided into 3 groups: those older than 65 years, those 15-64 years and those younger than 15 years. For these three groups, the factors of 1, 0.5 and 0 have been used to quantify the cremations including amalgam tooth fillings: all in the age group >65 yrs, half of the age group 15-64 yrs and none in the age group <15 yrs. This

may still lead into an overestimate due to missing teeth etc. but is a considerably smaller overestimation than using only the Tier 1 emission factor for all cremations.

The emission factor of 1.48 g/cremation (without abatement from Guidebook 2019) has been used for crematoria without abatement technique and the country specific emission factor of 0.59 g Hg/cremation for those cremations in crematoria with activated carbon filters. The country specific emission factor is based on Swedish and Finnish emission measurements, which result in concentrations below 0.1 mg/m³(n), the removal efficiency of the activated carbon filters being 96-99.5%.

Activity data

The number of incinerated corpses is received from the Finnish Congregations (Finnish Congregations, 2019) by each crematoria, and out of these an annual share is calculated from cremations in crematoria with abatement and those without abatement (Table 6.18 and Figure 6.5).

	All	Without abatement	With abatement	Share abated		All	Without abatement	With abatement	Share abated
1990	8000	8000	0	0	2006	16459	16459	0	0
1991	8000	8000	0	0	2007	17796	17796	0	0
1992	8121	8121	0	0	2008	18199	18199	0	0
1993	8986	8986	0	0	2009	19561	19561	0	0
1994	9163	9163	0	0	2010	21068	21068	0	0
1995	9774	9774	0	0	2011	21540	21540	0	0
1996	10823	10823	0	0	2012	22648	22648	0	0
1997	10977	10977	0	0	2013	23702	19345	4357	0.183824
1998	11834	11834	0	0	2014	24822	18900	5922	0.238579
1999	12466	12466	0	0	2015	25631	19839	5792	0.225976
2000	13084	13084	0	0	2016	27483	18600	8883	0.323218
2001	13391	13391	0	0	2017	28336	17877	10459	0.369106
2002	14354	14354	0	0	2018	29550	17539	12011	0.406464
2003	14847	14847	0	0					
2004	15508	15508	0	0					
2005	16108	16108	0	0					

Table 6.18. Cremations per year and annual shares with/without abatement (activated carbon)

Figure 6.5. Mercury emissions from crematoria in Finland 1990-2018

Mercury emissions are presented in Table 5.20.

Particles, POPs and heavy metals

All other emissions than Hg are calculated with the 2016 Guidebook EFs.

Particle and heavy metal emissions from cremation are presented in Table 6.19 and POP emissions in Table 6.20.

Year	TSP (t)	PM10 (t)	PM _{2.5} (t)	BC (t)	Hg(g)	Pb(g)	Cd (g)	As (g)	Cr(g)	Cu(g)	Ni(g	Se(g)	Zn(g)
Year	TSP (t)	PM10 (t)	PM _{2.5} (t)	BC (t)	Hg(g)	Pb(g)	Cd (g)	As (g)	Cr(g)	Cu(g)	Ni(g	Se(g)	Zn(g)
1990	0.293	0.264	0.264	0.132	5893	228	38	104	103	95	132	151	1218
1991	0.299	0.269	0.269	0.135	5892	233	39	106	105	97	135	154	1243
1992	0.313	0.282	0.282	0.141	5988	244	41	111	110	101	141	161	1300
1993	0.347	0.312	0.312	0.156	6635	270	45	122	122	112	156	178	1439
1994	0.353	0.318	0.318	0.159	6761	275	46	125	124	114	159	181	1467
1995	0.377	0.339	0.339	0.170	7220	294	49	133	133	121	169	193	1565
1996	0.417	0.376	0.376	0.188	7964	325	54	147	147	135	188	214	1733
1997	0.423	0.381	0.381	0.190	8490	330	55	149	149	136	190	217	1758
1998	0.456	0.411	0.411	0.205	9436	355	60	161	160	147	205	234	1895
1999	0.481	0.433	0.433	0.216	9939	374	63	170	169	155	216	247	1996
2000	0.505	0.454	0.454	0.227	11196	393	66	178	177	163	227	259	2095
2001	0.516	0.465	0.465	0.232	11474	402	67	182	182	166	232	265	2144
2002	0.553	0.498	0.498	0.249	12314	431	72	195	195	178	249	284	2298
2003	0.573	0.515	0.515	0.258	12722	446	75	202	201	185	257	294	2377
2004	0.598	0.538	0.538	0.269	13253	466	78	211	210	193	269	307	2483
2005	0.621	0.559	0.559	0.279	13737	484	81	219	218	200	279	319	2579
2006	0.635	0.571	0.571	0.286	14089	494	83	224	223	205	285	326	2635
2007	0.686	0.618	0.618	0.309	15644	534	90	242	241	221	308	352	2849
2008	0.702	0.632	0.632	0.316	16210	547	92	248	247	226	315	360	2914
2009	0.754	0.679	0.679	0.339	17921	587	98	266	265	243	339	387	3132
2010	0.812	0.731	0.731	0.366	19833	633	106	287	286	262	365	417	3373
2011	0.831	0.747	0.747	0.374	20323	647	108	293	292	268	373	426	3449
2012	0.873	0.786	0.786	0.393	21446	680	114	308	307	282	392	448	3626
2013	0.914	0.822	0.822	0.411	18585	712	119	323	321	295	411	469	3795
2014	0.957	0.861	0.861	0.431	18309	745	125	338	337	309	430	491	3974
2015	0.988	0.889	0.889	0.445	19277	770	129	349	348	319	444	507	4104
2016	1.060	0.954	0.954	0.477	18293	825	138	374	373	342	476	544	4401
2017	1.093	0.983	0.983	0.492	17717	851	143	386	384	352	491	560	4537
2018	1.139	1.025	1.025	0.513	17523	887	149	402	401	367	512	585	4732

Table 6.19 Particle and heavy metal emissions from cremation

Table 6.20 POP emissions from cremation

Year	HCB (kg)	PCB (kg)	PCDD/PCDF (g l-	B(a)P (kg)	B(b)F (kg)	B(k)F (kg)	I(1,2,3-cd)P
1990	0.001	0.003	0.00021	0.10	0.05	0.05	0.05
1991	0.001	0.003	0.00021	0.10	0.06	0.05	0.05
1992	0.001	0.003	0.00022	0.11	0.06	0.05	0.06
1993	0.001	0.004	0.00024	0.12	0.06	0.06	0.06
1994	0.001	0.004	0.00025	0.12	0.07	0.06	0.06
1995	0.001	0.004	0.00026	0.13	0.07	0.06	0.07
1996	0.002	0.004	0.00029	0.14	0.08	0.07	0.08
1997	0.002	0.005	0.00030	0.14	0.08	0.07	0.08

1998	0.002	0.005	0.00032	0.16	0.09	0.08	0.08
1999	0.002	0.005	0.00034	0.16	0.09	0.08	0.09
2000	0.002	0.005	0.00035	0.17	0.09	0.08	0.09
2001	0.002	0.005	0.00036	0.18	0.10	0.09	0.09
2002	0.002	0.006	0.00039	0.19	0.10	0.09	0.10
2003	0.002	0.006	0.00040	0.20	0.11	0.10	0.10
2004	0.002	0.006	0.00042	0.20	0.11	0.10	0.11
2005	0.002	0.007	0.00043	0.21	0.12	0.10	0.11
2006	0.002	0.007	0.00044	0.22	0.12	0.11	0.12
2007	0.003	0.007	0.00048	0.23	0.13	0.11	0.12
2008	0.003	0.007	0.00049	0.24	0.13	0.12	0.13
2009	0.003	0.008	0.00053	0.26	0.14	0.13	0.14
2010	0.003	0.009	0.00057	0.28	0.15	0.14	0.15
2011	0.003	0.009	0.00058	0.28	0.16	0.14	0.15
2012	0.003	0.009	0.00061	0.30	0.16	0.15	0.16
2013	0.004	0.010	0.00064	0.31	0.17	0.15	0.17
2014	0.004	0.010	0.00067	0.33	0.18	0.16	0.17
2015	0.004	0.011	0.00069	0.34	0.18	0.17	0.18
2016	0.004	0.011	0.00074	0.36	0.20	0.18	0.19
2017	0.004	0.011	0.00077	0.37	0.20	0.18	0.20
2018	0.004	0.012	0.00079	0.39	0.21	0.19	0.20

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied in the calculation of 2014 emissions.

Source-specific recalculations including changes made in response to the review Process

2013

- Inclusion of heavy metal emissions

2017

- The method was revised to the emission factors from the 2016 Guidebook 2016 for the whole time series.

2020

- A country-specific method for calculation of Hg emissions was developed. The impact of the recalculation is presented in Table 6.21.

Table 6.21	1990	1995	2000	2005	2010	2015	2016	2017	2018	0.040													-
Submitted										0.030		_											-
2019 (t)	0.023	0.028	0.022	0.014	0.015	0.015	0.016	0.017	0.017	0.020	_				\rightarrow								-
Submitted										0.010									/				-
2020 (t)	0.004	0.004	0.007	0.009	0.013	0.015	0.016	0.015	0.018	0.000	_												_
		-	-	-				-		0.000	06	92	94	8	8	02	4	90 80	10	12	14	10	3
Difference (t)	-0.019	0.024	0.015	0.005	-0.002	0.000	0.000	0.002	0.000		19	1	61 6	9	20	20	57	5 6	20	20	20	20	4
												Sub	mitte	d 20	19 <i>(</i> †) -		Sub	mitt	ed 20	120 ([.]	t)	
Difference (%)	-83.7	-84.3	-67.7	-37.2	-12.1	2.0	-2.1	-9.0	0.5			546		u 20	13 (0	/		500			/20 (9	

Source-specific planned improvements

None

Open burning of waste (NFR 5C2)

Source category description

Incineration in households is forbidden according to the Environmental Protection Act and therefore no emissions are expected from this category.

Source-specific recalculations including changes made in response to the review Process

2020

- This chapter (NFR 5C2) was accidentally removed when the IIR was thoroughly updated in the recalculation processes in 2018 and 2019 and is now returned to the IIR.

6.6 Wastewater Handling (NFR 5D)

Source category description

The emission sources cover municipal (domestic) and industrial wastewater handling plants and septic tanks. Emissions from wastewater treatment are declining since 1990 due to increasingly efficient treatment of wastewater which has also been implemented in sparsely populated areas, as well as a lower nitrogen burden released from industrial wastewaters into waterbodies.

Domestic wastewater handling (NFR 5D1)

Changes in chapter							
March 2020 KS. JMP							

Source category description

In Finland there are approximately 540 municipal wastewater treatment plants, each of them treat wastewater from more than 50 people (Finnish Water Utilities Association, FIWA), 2016).

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 6.22.

Table 6.22 Contribution of Domestic wastewater handling	(NFR 5D1) to total	emissions in 2018.
---	----------	------------	--------------------

Pollutant	Emissions from domestic wastewater handling in 2017	Total emissions in 2017	Unit	Share of total emissions %	% reported by the plants
NMVOC	0,009	85.317	Gg	<0.1	0
NH3	0,003	32.189	Gg	<0.1	100

The NMVOC emissions reported under the UNECE CLRTAP and the EU NECD are also reported under the UNFCCC and the activity data and methods used in the calculations are the same.

Methodological issues

NMVOC emissions

NMVOC emissions are calculated using the method presented in the EMEP/EEA Emission Inventory Guidebook 2019. Activity data is taken from YLVA database and presented in Table 6.23. For years 2018 years reporting same values as reported in 2017 have been used due the lack of data in the YLVA database.

Year	handled domestic wastewater (1000 m3)	Year	handled domestic wastewater (1000 m3)
1990	213801	2010	510019
1991	200757	2011	569107
1992	196439	2012	618240
1993	168243	2013	539609
1994	177414	2014	512343
1995	281343	2015	566967
1996	352501	2016	513002
1997	519530	2017	620757
1998	584699	2018	620757
1999	538664		
2000	575409		
2001	552574		
2002	790886		
2003	475846		
2004	567214		
2005	550628		
2006	527119		
2007	643100		
2008	690266		
2009	494373		

Table 6.23 Handled domestic wastewater 1990-2018 (1000m3).

NH₃ emissions

NH3 emissions are mainly reported by the plants according to the monitoring requirements in the environmental permits. In cases when no plant specific data has been available for a certain year, the emissions have been calculated.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied since the 2012 submission.

Source-specific recalculations including changes made in response to the review process

2016

- Previously NMVOC emissions from industrial and domestic wastewater handling were reported aggregated under NFR 5D3 Other wastewater handling and have since the 2016 submission been reported under NFRs 5D1 and 5D2.

2018

- The recommendation of the 2017 NECD Technical Review to revise the method to calculate NMVOC emissions could not be implemented because the wastewater volume data is not accurate enough to implement the method from the 2016 Guidebook. The current method is considered to be more accurate and is also consistent with the one used in the greenhouse gas reporting

2019

- NMVOC emissions are calculated as described Guidebook 2019.

2020

 Ammonia emissions from some point sources was accidentally been excluded in the 2019 submission for the years 2012, 2014 and 2015. The missing NH3 emissions have been included in the 2020 submission and increased slightly the emissions.

Source-specific planned improvements

None

Industrial wastewater handling (NFR 5D2)

Changes in chapterMarch 2020KS & JMP

Source category description

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 6.24.

Table 6.24 Contribution of Industrial wastewater handling (NFR 5D2) to total emissions in 2018.

Pollutant	Emissions from industrial wastewater handling	Total emissions	Unit	Share of total emissions %	% reported by the plants
NMVOC	0.018	5.317	Gg	<0.1	0

The NMVOC emissions reported under the UNECE CLRTAP and the EU NECD are also reported under the UNFCCC reporting and the activity data and methods used in the calculation are the same.

Methodological issues

NMVOC emissions

NMVOC emissions are calculated using method presented in the EMEP/EEA Emission Inventory Guidebook 2019. Activity data is taken from YLVA database and presented in Table 6.25. For the year 2018 the same value is used as reported in 2017 due the lack of activity data in YLVA database.

Table 6.25 Handled industrial wastewater 1990-2018 (1000m3).

Year	handled industrial wastewater (1000 m3)	Year	handled industrial wastewater (1000 m3)
1990	1433445	2010	936139
1991	1302372	2011	968823
1992	1297080	2012	913886
1993	1339249	2013	881691
1994	1463809	2014	868204
1995	1415457	2015	849596
1996	1378742	2016	910491
1997	1340104	2017	1184187
1998	1373581	2018	1184187
1999	1379977		
2000	1356726		
2001	1296868		
2002	1230824		
2003	1217227		
2004	1167849		
2005	1047229		
2006	1082900		
2007	1051384		
2008	1010498		
2009	845063		

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied in the calculation of 2014 emissions.

Source-specific recalculations including changes made in response to the review process

2016

- Previously NMVOC emissions from industrial and domestic wastewater handling were reported aggregated under NFR 5D3 Other wastewater handling and have since the 2016 submission been reported under NFRs 5D1 and 5D2.

2018

- The recommendation of the 2017 NECD Technical Review to revise the method to calculate NMVOC emissions could not be implemented because the wastewater volume data is not accurate enough to implement the method from the 2016 Guidebook. The current method is considered to be more accurate and is also consistent with the one used in the greenhouse gas reporting

2019

- NMVOC emissions are calculated as described Guidebook 2016.

Source-specific planned improvements

None

Other Wastewater handling (NFR 5D3)

Changes in chapter March 2020 KS & JMP

No "other" wastewater handling occurs in the country.

Source-specific recalculations including changes made in response to the review process

2016

 The allocation of NMVOC emissions under NFR categories was checked to be consistent with UNFCCC CRF categories since the 2016 submission. NMVOC emissions from wastewater handling previously reported under NFR 5D3 Other wastewater handling are now reported under NFRs 5D1 and 5D2 for the whole time series.

2018

The notation key was changed from "NA" to "NO"

6.7 Other waste (NFR 5E)

 Changes in chapter

 March 2020
 KS & JMP

Source category description

NFR 5 E Other covers emissions from

- house and car fires (particles, PCDD/F and heavy metals)
- latrines (NH3)

The shares of emissions for each air pollutant reported under the NFR category are presented in Table 6.26.

Pollutant	Emissions from other waste in 2017	Total emissions in 2017	Unit	Share of total emissions %	% reported by the plants
NH3	0.381	32.189	Gg	1,2	0
PM2.5	0.103	17.798	Gg	0,6	0
PM10	0.103	31.116	Gg	0,4	0
TSP	0.103	45.069	Gg	0,2	0
BC	0.009	4.014	Gg	0,2	0
Pb	<0.001	15.410	Mg	<0.1	0
Cd	<0.001	0.883	Mg	<0.1	0
Hg	<0.001	0.677	Mg	0,1	0
As	<0.001	2.415	Mg	<0.1	0
Cr	<0.001	15.344	Mg	<0.1	0
Cu	0.002	40.173	Mg	<0.1	0
PCDD/ F	1.068	14.356	g I-Teq	8,2	0

Table 6.26 Contribution of Other waste (NFR 5E) to total emissions in 2018.

Methodological issues

Car and house fires

Particles

Emissions from house and car fires are calculated using emission factors: from the Guidebook 2019 as follows; car fires 2.3 kg/fire (TSP PM10,PM2.5), house fires (detached houses) 143.82 kg /fire (TSP, PM10, PM2.5), house fires (undetached houses) 61.62 kg/fire (TSP, PM10, PM2.5), house fires (apartment buildings) 43.78 kg/fire (TSP, PM10, PM2.5) and house fires (industrial buildings) 27.23 kg/fire (TSP, PM10, PM2.5). In 2016 submission the whole time series has been recalculated as result from correct emission factors in Guidebook 2016. As described in Guidebook: *Personal contact with Kristin Aasestad has provided a correction of the units which are inaccurate in the text

of Aasestad (2007). Previously EF:s from Norwegian IIR has been used and the EF as a result of wrong unit has been 1000x to small. Black carbon emissions from house fires are calculated using emission factor 9% of PM2.5 (Aasestad, 2013).

Heavy metals

Emission factors for heavy metals are taken from Guidebook 2019 as presented in Table 6.27

Pollutant	Unit	Emission factors for house fires (Guidebook 2016)								
		Detached houses	Undetached houses	Apartment buildings	Industrial buildings					
TSP	kg/fire	143.82	61.62	43.78	27.23					
PM10	kg/fire	143.82	61.62	43.78	27.24					
PM2.5	kg/fire	143.82	61.62	43.78	27.23					
Pb	g/fire	0.42	0.18	0.13	0.08					
Cd	g/fire	0.85	0.36	0.26	0.16					
Hg	g/fire	0.85	0.36	0.26	0.16					
As	g/fire	1.35	0.58	0.41	0.25					
Cr	g/fire	1.29	0.55	0.39	0.24					
Cu	g/fire	2.99	1.28	0.91	0.57					
PCDD/F	mg/fire	1.44	0.62	0.44	0.27					

Table 6.27 Emission factors for heavy metals from house fires.

PCDD/F

Emission factors from car and house fires are from Guidebook 2019 and presented in Table 6.27 above.

Activity data

Activity data for 1990-2018 is presented in Table 6.28.

For house fires it is assumed based on information from Rescue Services' Fire Statistics that 26% of house fires are un-detached house fires 4% detached house fires 10% apartment building fires 18% industrial building fires¹

The Fire Statistics were changed in 2009 resulting in a lower number of house fires compared to the previous years.

Out of vehicle fires 68% are passenger car fires (Rescue Services, 2002).

Table 6.28 Activity data: car and house fires (Rescue Services, 2020)

Year	Car fires (Rescue Services)	House fires (Rescue Services)	Year	Car fires (Rescue Services)	House fires (Rescue Services)	
1990	1693 car fires	6 010 house fires	2006	1852 car fires	3 998 house fires	
1991	1598 car fires	6 050 house fires	2007	1733 car fires	4 025 house fires	
1992	1428 car fires	5 900 house fires	2008	1 618 car fires	4 485 house fires	
1993	952 car fires	4 000 house fires	2009	1 632 car fires	2 736 house fires	
1994	884 car fires	3 020 house fires	2010	1 658 car fires	2 786 house fires	
1995	1224 car fires	3 500 house fires	2011	1 685 car fires	2 543 house fires	
1996	1292 car fires	3 550 house fires	2012	2 277 car fires	2 413 house fires	
1997	1353 car fires	3 020 house fires	2013	1 588 car fires	2 341 house fires	
1998	1360 car fires	3 020 house fires	2014	1999 car fires	2144 house fires	
1999	1530 car fires	2 900 house fires	2015	2 200 car fires	2010 house fires	
2000	1632 car fires	3 010 house fires	2016	2 262 car fires	2164 house fires	
2001	1768 car fires	3 040 house fires	2017	2 081 car fires	2106 house fires	
2002	1836 car fires	3 040 house fires	2018	2 335 car fires	2018 house fires	
2003	1836 car fires	3 040 house fires				
2004	1809 car fires	3 420 house fires				
2005	1788 car fires	3 670 house fires				

Latrines

NH_3

NH3 emissions are calculated according to Guidebook 2016.

Latrines are mainly used at summer cottages in Finland. It is assumed that latrines exist at 70% of summer cottages and are used by approximately 2 persons during the summer months, i.e. 4 months per year. The number of summer cottages and NH3 emissions are presented in Table 6.29.

Table 6.29 Number of summer cottages in Finland 1990-2017 (Statistics Finland)

Year	Number of summer cottages	NH3 (kt)	Year	Number of summer cottages	NH3 (kt)
1980-84	251744	0.188	2012	496208	0.371
1985-89	251744	0.188	2013	496209	0.371
1990-94	367686	0.275	2014	500400	0.374
1995-99	416236	0.310	2015	501600	0,375
2000	450569	0.336	2016	502900	0,375
2005	474277	0.354	2017	507200	0.379
			2018	509800	0.381

Emissions of particles, heavy metals and PCDD/F from Other Waste are presented in Table 6.30

Year	TSP (Gg)	PM ₁₀ (Gg)	PM _{2.5} (Gg)	As (kg)	Cd (kg)	Cu (kg)	Cr (kg)	Pb (kg)	Hg (kg)	PCDD/PCDF (g I-TEQ)
1990	0.30	0.30	0.30	2.77	1.74	6.14	2.64	0.86	1.74	3.03
1991	0.30	0.30	0.30	2.78	1.76	6.18	2.66	0.87	1.76	3.05
1992	0.29	0.29	0.29	2.72	1.71	6.03	2.59	0.85	1.71	2.97
1993	0.20	0.20	0.20	1.84	1.16	4.09	1.76	0.58	1.16	2.01
1994	0.15	0.15	0.15	1.39	0.88	3.09	1.33	0.43	0.88	1.53

Table 6.30 Particle, heavy metal and POP emissions from other waste (NFR 5E)

1995	0.17	0.17	0.17	1.61	1.02	3.58	1.54	0.50	1.02	1.78
1996	0.18	0.18	0.18	1.62	1.02	3.59	1.55	0.51	1.02	1.81
1997	0.16	0.16	0.16	1.51	0.95	3.34	1.44	0.47	0.95	1.55
1998	0.16	0.16	0.16	1.48	0.94	3.29	1.42	0.46	0.94	1.55
1999	0.15	0.15	0.15	1.34	0.85	2.98	1.28	0.42	0.85	1.50
2000	0.16	0.16	0.16	1.44	0.91	3.20	1.38	0.45	0.91	1.56
2001	0.17	0.17	0.17	1.60	1.01	3.54	1.52	0.50	1.01	1.58
2002	0.17	0.17	0.17	1.58	1.00	3.52	1.51	0.49	1.00	1.58
2003	0.15	0.15	0.15	1.39	0.87	3.08	1.32	0.43	0.87	1.58
2004	0.17	0.17	0.17	1.57	0.99	3.50	1.50	0.49	0.99	1.77
2005	0.18	0.18	0.18	1.69	1.07	3.75	1.61	0.53	1.07	1.89
2006	0.20	0.20	0.20	1.84	1.16	4.09	1.76	0.57	1.16	2.05
2007	0.20	0.20	0.20	1.85	1.17	4.11	1.77	0.58	1.17	2.06
2008	0.22	0.22	0.22	2.06	1.30	4.58	1.97	0.64	1.30	2.28
2009	0.14	0.14	0.14	1.26	0.79	2.80	1.20	0.39	0.79	1.42
2010	0.14	0.14	0.14	1.28	0.81	2.85	1.22	0.40	0.81	1.45
2011	0.13	0.13	0.13	1.17	0.74	2.60	1.12	0.37	0.74	1.33
2012	0.12	0.12	0.12	1.11	0.70	2.47	1.06	0.35	0.70	1.26
2013	0.12	0.12	0.12	1.08	0.68	2.39	1.03	0.34	0.68	1.23
2014	0.11	0.11	0.11	0.99	0.62	2.19	0.94	0.31	0.62	1.12
2015	0.10	0.10	0.10	0.93	0.58	2.05	0.88	0.29	0.58	1.06
2016	0.10	0.10	0.10	0.99	0.63	2.21	0.95	0.31	0.63	1.14
2017	0.10	0.10	0.10	0.97	0.61	2.15	0.93	0.30	0.61	1.10
2018	0.10	0.10	0.10	0.93	0.59	2.10	0.89	0.29	0.59	1.07

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied in the calculation of 2010 emissions.

Source-specific recalculations including changes made in response to the review process

2009

- PCDD/F and PCB emissions from unintentional landfill fires were included.

2013

- NH₃ emissions from latrines were included.

2015

- Emissions from car and house fires were moved from NFR 2G (NFR09) to NFR 5E (NFR2014).

2016

- Emissions from car and house fires were recalculated as the result of correction of emission factors in Guidebook 2016.

- Emissions were reallocated to the NFR 5E from NFR 2G from the year 2014 emissions.
- Emissions from car, house and unintentional landfill fires are included in the inventory in the NFR 5E.

2017

- NH3 emissions from latrines was reallocated to 5E, however, the change was done t only for years 2014 and 2015 emissions.
- Heavy metal emissions from NFR 5E (house and car fires) were updated according Guidebook 2016. Source-specific planned improvements

2018

 No methodology is provided in the Guidebook to estimate emissions from landfill fires. The method used to calculate all emissions in the earlier submissions was considered to be uncertain and the emissions were removed to this submission.

Source specific planned improvements

Possibilities to include HCB emissions from landfill fires to the inventory are studied.

9 OTHER NFR 6A

No emissions are occurring from other anthropogenic sources.