FINLAND'S INFORMATIVE INVENTORY REPORT 2020

Air Pollutant Emissions 1980-2018 under the UNECE CLRTAP and the EU NECD

> Part 5 Agriculture

FINNISH ENVIRONMENT INSTITUTE Centre for Sustainable Consumption and Production Environmental Management in Industry – Air Emissions Team Finland's IIR Part 5 Agriculture

.

Picture on the cover page: Wild arctic strawberries (Saarinen 2015)

FINLAND'S IIR PART 5 - AGRICULTURE

5 AGRICULTURE (NFR 3)

- 5.1 Overview of the sector
- 5.2 Emission trends
- 5.3 Manure Management (NFR 3B)
- 5.4 Agricultural Soils (NFR 3D)
 - 3 D 1 a Synthetic N-fertilizers
 - 3 D a 2 a Animal manure applied to soils
 - 3 D a 2 b Sewage sludge applied to soils
 - 3 D a 2 c Other organic fertilizers applied to soils
 - 3 D a 3 Urine and dung deposited by grazing animals
 - 3 D a 4 Crop residues applied to soils
 - 3 D b Indirect emissions from managed soils

3 D c Farm-level agricultural operations including storage, handling and transport of agricultural products

3 D d Off-farm storage, handling and transport of bulk agricultural products

3 D e Cultivated crops

- 3 D f Use of pesticides
- 5.5 Field burning of agricultural wastes (NFR 3F)
- 5.6 Agriculture other (NFR 3 D f)

Sub-chapters included under each NFR subcategory

Source category description

Emission trend

Methodological issues

Uncertainty and time series' consistency

Source-specific QA/QC and verification

Source-specific recalculations including changes in response to the review

Source-specific planned improvements

5 AGRICULTURE (NFR 3)

5.1 Overview of the sector

Changes in chapt	er
March 2020	KS & JM & JMP

Agricultural activities in Finland

Agriculture in Finland is characterized by the northern climate and self-sufficiency in most major agricultural products. Its economic role is declining in terms of GDP and employment in primary production, but together with the food industry and forestry with which it is linked, it forms a significant part of the Finnish economy. The majority of farms and agricultural land in Finland lie between the 60th and 65th parallel, making it the only country in the world with a significant agricultural sector so far in the north. The percentage of farms concentrating on animal production increases towards the north and east.

Since 1990 there have been structural changes in agriculture, which have resulted in an increase in farm size and a decrease in the numbers of domestic livestock. The number of farms has steadily declined for the last decades. Between 2000 and 2018 their number fell from almost 80,000 to about 48,000 while the amount of arable land slightly increased to a total of almost 2.24 million hectares. As another example, the number of cattle was 35 per cent less in 2018 than in 1990. Agriculture employed 84,000 people in 2016 with a drop of 54 percent from 2000.

Although the decrease in the number of livestock cannot be seen in the development of ammonia emissions it is visible in CH_4 emissions from enteric fermentation and N_2O emissions from manure management. For ammonia, the specific ammonia emissions grow simultaneously with the decrease of animal numbers. Specifically this can be seen in the emissions from dairy cows. However, the emissions have not decreased in proportion to the drop in the number of livestock, because milk and meat output and emissions per animal have increased.

5.2 Emission trends

Changes in chapterMarch 2020KS & JM & JMP

The Finnish inventory of air pollutants from agriculture includes emissions from animal husbandry (including manure management, manure application and grazing), application of mineral fertilizers, harvesting, field preparation, storage and handling of agricultural crops, field burning of agricultural wastes, use of pesticides and sewage sludge application to soils (Table 5.1)

		Polluta	ants			Acti	vities						
NFR	SNAP	NH₃	NOx	TSP	PM10	PM2.5	NMVOC						
3B1a	100501	Х	х	х	х	х	х	Dairy cattle					
3B1b	100502	Х	х	х	х	х	х	Non-dairy cattle: including sukcler cows, bulls, calves					
3B2	100505	Х	х	х	х	х	х	Sheep with lambs					
3B3	100503 100504	x	х	x	x	x	x	Swine, incl. fattening pigs, sows with piglets, veaned pigs (20-50 kg)					
3B4a	100514	NO	NO	NO	NO	NO	NO NO Buffalo						
3B4d	100511	Х	х	х	х	х	х	Goat					
3B4e	100506	Х	х	Х	х	х	х	Horses and ponies					
3B4f	100512	NO	NO	NO	NO	NO	NO	Mules and asses					
3B4gi	100507	Х	х	х	х	х	х	Laying hens					
3B4gii	100508	Х	х	Х	х	х	х	Broilers, broiler hens					
3B4giii	100509a	Х	х	х	х	х	х	Turkeys					
3B4giv	100509b	x	х	х	x	x	x	Other Poultry, incl. cockerels, broiler hens, chicken and other poultry					
3B4h	100515 100516	x	х	x	x	x	x x Fur animals, reindeer						
NFR	SNAP	Polluta	ants			Activities							
3Da1	100101 100106	NH3, N	Юx			Inor (NH:	ganic N ferti 3)	lisers (includes urea) ; Application of nitrogen fertilizers					
3Da2a	100905	NH₃ (c	alculated i	n 3B), N	Ox, NMVC	DC Anin	nal manure	applied to soils					
3Da2b	100906	NH3, N	Ox			Sew	age sludge	applied to soils					
3Da2c	100907	-				Othe	er organic fe	artilisers applied to soils					
3Da3	100517	NH₃ (c	alculated i	n 3B),N0	Ox, NMVO	C Urin	e and dung	deposited by grazing animals					
3Da4	100207	-				Crop	o residues a	pplied to soils					
3Db	100208	-				Indir	ect emissio	ns from managed soils					
3Dc	100901,100904, 101000	TSP, F	PM ₁₀ , PM _{2.}	5		Farr Stor	n-level stora age and har	age, handling and transport of agricultural products; ndling of agricultural crops and fertilizers					
3Dd	101100	-				Off-f	arm storage	e, handling and transport of agricultural products					
3De	100201,100206, 100700	NMVO	С			Cult	Cultivated crops, crops						
3Df	100601,100604	emissi	ons of spe	sific pes	tiside (HC	B) Use	of pesticide	S					
3F	100301,100305	NOx, C PM10 Cu, Ni,	CO, NMVC PM2.5, BC , Se, Zn, P	C, SOx, C, Pb, Co CDD/F,	NH₃, TSP ḋ, Hg, As, ⊄ PAH-4	, Cr, Field	burning of	agricultural residues					

Table 5.1 Activities and emissions reported under NFR 3 Agriculture.

Ammonia

Ammonia emissions are generated from manure management, application of nitrogen fertilizers, sewage sludge applied to soils and field burning of agricultural wastes. The total agricultural NH₃ emissions in 2018 were 28.8 Gg, out of which 18.3 Gg originated in manure management, 9.1Gg in fertilizer use and manure applied to soils, 1.4 kt in deposits by grazing, and 0.1 in field burning of agricultural wastes. The contribution of NFR sub-sectors to agricultural ammonia emissions is presented in Figure 5.1 and in Table 5.2.

Figure 5.1. Ammonia emissions 1980-2018

Agricultural ammonia emissions have been decreased over the period of 1980-2018 (Figure 5.1 and Table 5.2) partly due to changes in the economic structure in agriculture followed by an increase in the average farm size and the decrease in the number of small farms. Those changes resulted in the decrease of livestock numbers for all other animals than horses. The number of horses increased in the recent years due to the increasing interest in equitation. In addition, the use of nitrogen fertilisers has been reduced, while manure management has been improved due to measures taken by the farmers as part of an agro-environmental programme aiming at minimising nutrient load to surface waters. Since 2014, the Government decree on limiting certain emissions from agriculture and horticulture (1250/2014) has included additional measures for manure storing and application to limit ammonia emissions.

Year	NFR 3B	NFR 3D1a	NFR 3Da2a	NFR 3Da2b	NFR 3Da3	NFR 3F	Total
1980	18.10	2.89	10.31	0.000	2.10	0.07	33.47
1981	18.42	2.88	10.42	0.000	2.09	0.07	33.88
1982	19.02	2.71	10.47	0.000	2.07	0.07	34.34
1983	18.88	3.16	10.33	0.000	2.05	0.07	34.49
1984	18.88	3.10	10.31	0.000	2.05	0.07	34.41
1985	19.16	3.00	10.13	0.000	1.98	0.07	34.34
1986	18.93	2.97	10.01	0.000	1.96	0.07	33.94
1987	18.30	3.12	9.71	0.000	1.90	0.07	33.10
1988	17.85	3.14	9.40	0.000	1.83	0.07	32.29
1989	16.63	3.15	8.95	0.000	1.79	0.07	30.59
1990	16.85	3.73	9.49	0.060	1.65	0.11	31.89
1991	15.89	3.32	9.01	0.048	1.60	0.10	29.97
1992	15.79	2.71	8.83	0.042	1.54	0.08	28.99
1993	16.01	2.76	8.95	0.038	1.55	0.10	29.41
1994	16.57	2.77	9.09	0.056	1.53	0.10	30.12
1995	16.51	3.16	8.79	0.036	1.44	0.09	30.03
1996	17.04	2.86	8.93	0.042	1.46	0.10	30.43
1997	17.78	2.69	9.25	0.046	1.46	0.10	31.33
1998	17.39	2.66	9.11	0.016	1.43	0.07	30.68
1999	17.12	2.57	9.07	0.018	1.41	0.07	30.26
2000	17.09	2.56	9.12	0.014	1.42	0.10	30.30
2001	17.11	2.57	9.21	0.020	1.40	0.09	30.40
2002	17.59	2.48	9.50	0.017	1.41	0.09	31.09
2003	18.20	2.44	9.72	0.021	1.40	0.08	31.86
2004	18.24	2.36	9.81	0.012	1.41	0.08	31.91
2005	18.75	2.30	10.01	0.004	1.41	0.08	32.55
2006	18.58	2.26	9.83	0.004	1.43	0.07	32.17
2007	18.63	2.20	9.66	0.004	1.42	0.08	31.99
2008	18.20	2.37	9.39	0.007	1.42	0.08	31.47
2009	18.98	1.96	9.45	0.007	1.43	0.07	31.90
2010	19.17	2.22	9.49	0.009	1.45	0.05	32.39
2011	18.76	2.06	9.22	0.004	1.42	0.06	31.52
2012	18.97	1.92	9.08	0.007	1.37	0.06	31.41
2013	18.73	1.87	8.99	0.006	1.36	0.08	31.04
2014	18.99	1.98	9.10	0.002	1.36	0.07	31.50
2015	19.06	1.89	7.73	0.002	1.20	0.07	29.95
2016	18.95	1.86	7.67	0.002	1.36	0.07	29.91
2017	18.44	1.92	7.22	0.002	1.36	0.07	29.01
2018	18.32	2.06	7.01	0.002	1.35	0.06	28.80

Table 5.2 Ammonia emissions from agricultural sources (Gg) 1980-2018.

NMVOC

NMVOC emissions are generated in manure management, manure applied to soils, deposits during grazing, cultivated crops and field burning of agricultural waste. A summary of agricultural emissions is presented in Figure 5.2 and in Table 5.3.

Figure 5.2. NMVOC emissions 1980-2018

Agricultural NMVOC emissions (Figure 5.2 and Table 5.3) have been decreased over the period 1980–2018 partly due to changes in the economic structure followed by an increase in the average farm size and a decrease in the number of small farms. Those changes resulted in the decrease of livestock numbers except for the number of horses that has increased in the recent years due to the increasing interest in equitation.

Year	NFR 3B	NFR 3Da2a	NFR 3Da3	NFR 3De	NFR 3F	Total
1980	16.84	5.43	0.16	1.03	NE	25.22
1981	16.86	5.38	0.16	1.03	NE	25.09
1982	17.10	5.33	0.15	1.03	NE	25.17
1983	16.86	5.24	0.15	1.03	NE	24.73
1984	16.82	5.14	0.15	1.01	NE	24.53
1985	16.78	5.01	0.14	0.97	NE	24.08
1986	16.29	4.84	0.14	0.96	NE	23.40
1987	15.67	4.63	0.14	0.98	NE	22.61
1988	15.16	4.43	0.13	0.95	NE	21.73
1989	13.94	4.07	0.12	1.03	NE	20.18
1990	13.81	4.08	0.10	1.06	0.25	19.81
1991	13.04	3.83	0.10	0.83	0.23	18.41
1992	12.90	3.70	0.09	0.82	0.19	17.98
1993	13.19	3.71	0.09	0.82	0.24	18.27
1994	13.47	3.73	0.09	0.82	0.23	18.45
1995	12.92	3.54	0.09	0.84	0.21	17.61
1996	13.17	3.56	0.08	0.90	0.22	17.85
1997	13.57	3.63	0.08	0.89	0.22	18.23

Table 5.3 NMVOC emissions from agricultural sources (Gg) 1980-2018.

13.21	3.53	0.08	0.93	0.15	17.71
12.99	3.45	0.08	0.93	0.17	17.40
13.05	3.44	0.08	1.03	0.21	17.57
12.85	3.40	0.08	0.96	0.18	17.17
12.99	3.43	0.08	1.05	0.17	17.34
12.97	3.40	0.07	0.94	0.16	17.09
12.81	3.35	0.07	0.90	0.16	16.79
12.82	3.34	0.07	0.88	0.18	16.72
12.80	3.25	0.07	0.84	0.16	16.56
12.74	3.15	0.07	1.00	0.16	16.54
12.45	3.02	0.07	0.98	0.17	16.15
12.79	3.01	0.07	0.97	0.16	16.40
13.09	3.01	0.07	0.79	0.10	16.42
12.81	2.88	0.07	0.89	0.11	16.17
12.94	2.84	0.07	0.91	0.11	16.24
12.92	2.82	0.06	0.94	0.16	16.30
13.22	2.89	0.06	0.89	0.14	16.61
13.28	2.48	0.06	0.87	0.13	16.35
13.33	2.47	0.06	0.89	0.13	16.38
13.18	2.33	0.06	0.96	0.15	16.24
12.98	2.24	0.06	0.73	0.12	15.71
	13.21 12.99 13.05 12.85 12.99 12.97 12.81 12.82 12.80 12.74 12.75 12.79 13.09 12.81 12.92 13.22 13.28 13.33 13.18 12.98	13.213.5312.993.4513.053.4412.853.4012.993.4312.973.4012.813.3512.823.3412.803.2512.743.1512.453.0212.793.0113.093.0112.812.8812.942.8412.922.8213.222.8913.282.4813.332.4713.182.3312.982.24	13.21 3.53 0.08 12.99 3.45 0.08 13.05 3.44 0.08 12.85 3.40 0.08 12.99 3.43 0.08 12.97 3.40 0.07 12.81 3.35 0.07 12.82 3.34 0.07 12.82 3.34 0.07 12.80 3.25 0.07 12.74 3.15 0.07 12.74 3.02 0.07 12.79 3.01 0.07 12.99 2.88 0.07 12.94 2.84 0.07 12.92 2.82 0.06 13.22 2.89 0.06 13.28 2.48 0.06 13.18 2.33 0.06 12.98 2.24 0.06	13.21 3.53 0.08 0.93 12.99 3.45 0.08 0.93 13.05 3.44 0.08 1.03 12.85 3.40 0.08 0.96 12.99 3.43 0.08 1.05 12.97 3.40 0.07 0.94 12.81 3.35 0.07 0.90 12.82 3.34 0.07 0.88 12.80 3.25 0.07 0.84 12.74 3.15 0.07 1.00 12.45 3.02 0.07 0.98 12.79 3.01 0.07 0.97 13.09 3.01 0.07 0.91 12.94 2.84 0.07 0.91 12.92 2.82 0.06 0.89 13.28 2.48 0.06 0.87 13.18 2.33 0.06 0.96 12.98 2.24 0.06 0.73	13.21 3.53 0.08 0.93 0.15 12.99 3.45 0.08 0.93 0.17 13.05 3.44 0.08 1.03 0.21 12.85 3.40 0.08 0.96 0.18 12.99 3.43 0.08 1.05 0.17 12.97 3.40 0.07 0.94 0.16 12.81 3.35 0.07 0.90 0.16 12.82 3.34 0.07 0.88 0.18 12.80 3.25 0.07 0.84 0.16 12.74 3.15 0.07 1.00 0.16 12.45 3.02 0.07 0.98 0.17 12.79 3.01 0.07 0.97 0.16 12.45 3.02 0.07 0.98 0.17 12.79 3.01 0.07 0.97 0.16 13.09 3.01 0.07 0.97 0.16 13.22 2.82 0.06 0.94 0.16 13.22 2.82 0.06 0.89 0.14 13.28 2.48 0.06 0.87 0.13 13.18 2.33 0.06 0.96 0.15 12.98 2.24 0.06 0.73 0.12

NOx

NOx emissions are generated in manure management, use of fertilizers, manure applied to soils, deposits during grazing and field burning of agricultural waste. A summary of agricultural emissions is presented in Table 5.4 and in Figure 5.3.

Figure 5.3. NOx emissions 1980-2018

The decreasing trend in NOx emissions from agriculture is mainly a result of decreased use of mineral fertilisers (see Table 5.22), and decrease in grazing.

Year	NFR 3B	NFR 3Da1	NFR 3Da2a	NFR 3Da3	NFR 3F	Total
1980	0.54	7.57	3.42	0.97	NE	11.96
1981	0.54	7.54	3.45	0.96	NE	11.95
1982	0.55	7.09	3.47	0.95	NE	11.51
1983	0.55	8.27	3.42	0.94	NE	12.63
1984	0.55	8.12	3.39	0.94	NE	12.45
1985	0.55	7.85	3.34	0.90	NE	12.09
1986	0.54	7.78	3.29	0.89	NE	11.96
1987	0.52	8.17	3.18	0.87	NE	12.22
1988	0.51	8.23	3.08	0.83	NE	12.14
1989	0.47	8.24	2.90	0.81	NE	11.95
1990	0.47	9.14	3.00	0.73	0.113	12.98
1991	0.45	8.10	2.85	0.70	0.103	11.75
1992	0.44	6.53	2.80	0.67	0.085	10.09
1993	0.45	6.73	2.83	0.67	0.106	10.34
1994	0.46	6.77	2.87	0.66	0.102	10.40
1995	0.45	7.82	2.79	0.62	0.094	11.32
1996	0.46	7.18	2.83	0.63	0.102	10.74
1997	0.48	6.78	2.93	0.62	0.101	10.43
1998	0.47	6.80	2.87	0.61	0.075	10.36
1999	0.46	6.51	2.82	0.60	0.071	10.00
2000	0.46	6.69	2.82	0.60	0.100	10.21
2001	0.45	6.63	2.80	0.59	0.087	10.11
2002	0.45	6.42	2.85	0.59	0.090	9.95
2003	0.45	6.37	2.89	0.59	0.084	9.93
2004	0.44	6.19	2.87	0.59	0.084	9.73
2005	0.44	5.99	2.91	0.59	0.083	9.57
2006	0.43	5.93	2.90	0.59	0.074	9.49
2007	0.42	5.95	2.90	0.58	0.080	9.51
2008	0.41	6.52	2.87	0.58	0.078	10.05
2009	0.41	5.44	2.94	0.58	0.076	9.04
2010	0.41	6.26	2.99	0.59	0.051	9.89
2011	0.41	5.85	2.95	0.58	0.060	9.44
2012	0.41	5.56	2.96	0.56	0.059	9.14
2013	0.41	5.53	2.94	0.55	0.080	9.10
2014	0.42	5.90	2.97	0.55	0.073	9.49
2015	0.42	5.74	3.00	0.48	0.071	9.29
2016	0.43	5.53	2.97	0.55	0.070	9.12
2017	0.42	5.56	2.90	0.55	0.076	9.09
2018	0.42	5.54	2.88	0.54	0.059	9.02

 Table 5.4 NOx emissions from agricultural sources (Gg) 1980-2018

 CO, SO_x

Emissions presented in Table 5.5 and in Figure 5.4 originate from field burning of agricultural waste (see NFR 3F).

Figure 5.4. CO and SO2 emissions 1980-2018

The CO and SO₂ emission trends presented in Figure 5.4 depend on the volume of annually burned biomass, which is calculated using different grain species and specific emission factors.

Table 5.5 CO and SOx emissions from field burn	ing of agricultural	waste (wheat and o	ther grain) in 1990-
2018			

Year	CO, NFR 3F	SOx, NFR 3F	Year	CO, NFR 3F	SOx, NFR 3F
1990	3.69	0.015	2010	1.65	0.007
1991	3.35	0.013	2011	1.91	0.009
1992	2.79	0.011	2012	1.88	0.009
1993	3.47	0.014	2013	2.58	0.011
1994	3.34	0.013	2014	2.33	0.010
1995	3.08	0.012	2015	2.27	0.010
1996	3.33	0.014	2016	2.26	0.010
1997	3.30	0.013	2017	2.45	0.011
1998	2.43	0.010	2018	1.90	0.008
1999	2.34	0.009			
2000	3.25	0.014			
2001	2.83	0.012			
2002	2.89	0.013			
2003	2.70	0.012			
2004	2.69	0.012			
2005	2.69	0.011			
2006	2.40	0.010			
2007	2.60	0.011			
2008	2.54	0.010			
2009	2.48	0.010			

Particles

TSP, PM10, PM2.5 and BC emissions (Figure 5.5) are generated in animal husbandry, grain fields, storage and handling of agricultural crops and fertilizers as well as from field burning of agricultural waste as presented in Tables 5.6a. The fluctuation in emissions reflects the fluctuations in animal numbers.

Figure 5.5. Particle emissions 1980-2018

Table 5.6a	TSP	emissions	(kt) by	NFR	category	1990-2018
10010-0.00	101	011110010110	(111) 23	1 11 1 1	outogory	1000 2010

TSP (kt)	3B1a	3B1b	3B2	3B3	3B4d	3B4e	3B4gi	3B4gii	3B4gii i	3B4gi v	3B4h	3Dc	3F
1990	0.445	0.264	0.005	0.518	0.000	0.014	0.897	0.061	0.003	0.234	0.059	4.905	0.305
1991	0.406	0.261	0.005	0.489	0.000	0.014	0.765	0.067	0.004	0.189	0.047	4.883	0.277
1992	0.390	0.255	0.005	0.458	0.000	0.014	0.732	0.073	0.004	0.229	0.051	4.841	0.230
1993	0.389	0.249	0.006	0.436	0.000	0.013	0.741	0.079	0.004	0.219	0.052	4.831	0.286
1994	0.380	0.247	0.006	0.431	0.000	0.012	0.751	0.084	0.004	0.205	0.059	4.819	0.276
1995	0.364	0.221	0.008	0.442	0.000	0.012	0.766	0.090	0.004	0.213	0.067	4.792	0.254
1996	0.356	0.224	0.008	0.448	0.000	0.013	0.767	0.087	0.005	0.179	0.075	4.764	0.276
1997	0.352	0.224	0.008	0.478	0.000	0.013	0.761	0.104	0.006	0.184	0.078	4.720	0.273
1998	0.343	0.218	0.007	0.443	0.000	0.014	0.697	0.117	0.008	0.169	0.071	4.671	0.202
1999	0.331	0.213	0.006	0.437	0.000	0.014	0.616	0.128	0.012	0.146	0.067	4.650	0.193
2000	0.321	0.207	0.005	0.420	0.000	0.014	0.570	0.166	0.012	0.130	0.060	4.552	0.270
2001	0.307	0.203	0.005	0.397	0.000	0.015	0.587	0.116	0.025	0.147	0.062	4.521	0.235
2002	0.295	0.203	0.005	0.408	0.000	0.016	0.589	0.123	0.029	0.111	0.061	4.711	0.241
2003	0.277	0.200	0.005	0.434	0.000	0.017	0.553	0.128	0.033	0.133	0.065	4.677	0.225
2004	0.263	0.193	0.006	0.426	0.000	0.018	0.563	0.117	0.029	0.128	0.064	4.368	0.224
2005	0.253	0.191	0.005	0.438	0.000	0.019	0.573	0.119	0.027	0.135	0.068	4.574	0.222

2006	0.246	0.190	0.006	0.427	0.000	0.020	0.559	0.115	0.027	0.116	0.062	4.462	0.199
2007	0.236	0.185	0.007	0.443	0.000	0.020	0.554	0.109	0.024	0.104	0.063	4.408	0.215
2008	0.231	0.182	0.007	0.431	0.000	0.021	0.554	0.120	0.023	0.114	0.049	4.616	0.211
2009	0.232	0.180	0.007	0.417	0.000	0.021	0.498	0.105	0.017	0.109	0.062	4.384	0.205
2010	0.232	0.181	0.008	0.399	0.000	0.022	0.567	0.101	0.015	0.103	0.063	3.787	0.137
2011	0.229	0.177	0.009	0.386	0.000	0.022	0.541	0.117	0.017	0.091	0.052	4.107	0.160
2012	0.228	0.175	0.009	0.377	0.000	0.022	0.509	0.130	0.016	0.089	0.061	4.073	0.157
2013	0.226	0.174	0.009	0.371	0.000	0.022	0.551	0.148	0.015	0.101	0.055	4.309	0.214
2014	0.227	0.174	0.009	0.353	0.000	0.021	0.585	0.158	0.016	0.085	0.058	4.316	0.194
2015	0.227	0.174	0.011	0.350	0.000	0.021	0.562	0.148	0.014	0.080	0.056	4.013	0.189
2016	0.222	0.171	0.011	0.336	0.000	0.021	0.588	0.174	0.014	0.089	0.058	3.966	0.188
2017	0.215	0.169	0.011	0.309	0.000	0.021	0.601	0.170	0.016	0.065	0.053	3.523	0.204
2018	0.211	0.165	0.011	0.295	0.000	0.021	0.640	0.184	0.016	0.073	0.053	3.658	0.158

Table 5.6b PM2.5 emissions (kt) by NFR 1990-2018

PM2.5 (kt)	3B1a	3B1b	3B2	3B3	3B4d	3B4e	3B4gi	3B4gi i	3B4gi ii	3B4gi v	3B4h	3B1a	3F
1990	0.132	0.079	0.001	0.004	0.000	0.004	0.014	0.003	0.001	0.032	0.013	0.132	0.287
1991	0.120	0.078	0.001	0.004	0.000	0.004	0.012	0.003	0.001	0.026	0.010	0.120	0.261
1992	0.116	0.077	0.001	0.004	0.000	0.004	0.012	0.004	0.001	0.032	0.011	0.116	0.216
1993	0.116	0.075	0.001	0.004	0.000	0.004	0.012	0.004	0.001	0.030	0.012	0.116	0.269
1994	0.113	0.074	0.001	0.003	0.000	0.004	0.012	0.004	0.001	0.029	0.013	0.113	0.259
1995	0.108	0.066	0.001	0.004	0.000	0.004	0.012	0.005	0.001	0.030	0.015	0.108	0.239
1996	0.106	0.067	0.001	0.004	0.000	0.004	0.012	0.004	0.001	0.025	0.017	0.106	0.259
1997	0.105	0.067	0.001	0.004	0.000	0.004	0.012	0.005	0.001	0.025	0.017	0.105	0.257
1998	0.102	0.065	0.001	0.004	0.000	0.004	0.011	0.006	0.001	0.024	0.016	0.102	0.190
1999	0.098	0.064	0.001	0.004	0.000	0.004	0.010	0.006	0.002	0.020	0.015	0.098	0.182
2000	0.095	0.062	0.001	0.004	0.000	0.004	0.009	0.008	0.002	0.018	0.013	0.095	0.253
2001	0.091	0.061	0.001	0.003	0.000	0.004	0.009	0.006	0.005	0.021	0.014	0.091	0.221
2002	0.088	0.061	0.001	0.003	0.000	0.005	0.009	0.006	0.005	0.016	0.014	0.088	0.226
2003	0.082	0.060	0.001	0.004	0.000	0.005	0.009	0.006	0.006	0.019	0.014	0.082	0.211
2004	0.078	0.058	0.001	0.003	0.000	0.005	0.009	0.006	0.005	0.018	0.014	0.078	0.210
2005	0.075	0.057	0.001	0.004	0.000	0.006	0.009	0.006	0.005	0.019	0.015	0.075	0.209
2006	0.073	0.057	0.001	0.003	0.000	0.006	0.009	0.006	0.005	0.016	0.014	0.073	0.187
2007	0.070	0.056	0.001	0.004	0.000	0.006	0.009	0.005	0.004	0.015	0.014	0.070	0.202
2008	0.069	0.055	0.001	0.003	0.000	0.006	0.009	0.006	0.004	0.016	0.011	0.069	0.198
2009	0.069	0.054	0.001	0.003	0.000	0.006	0.008	0.005	0.003	0.015	0.014	0.069	0.193
2010	0.069	0.055	0.001	0.003	0.000	0.006	0.009	0.005	0.003	0.014	0.014	0.069	0.129
2011	0.068	0.053	0.001	0.003	0.000	0.006	0.009	0.006	0.003	0.013	0.012	0.068	0.150
2012	0.068	0.053	0.001	0.003	0.000	0.006	0.008	0.007	0.003	0.012	0.014	0.068	0.147
2013	0.067	0.053	0.001	0.003	0.000	0.006	0.009	0.007	0.003	0.014	0.012	0.067	0.201

2014	0.067	0.052	0.001	0.003	0.000	0.006	0.009	0.008	0.003	0.012	0.013	0.067	0.182
2015	0.068	0.052	0.002	0.003	0.000	0.006	0.009	0.007	0.002	0.011	0.012	0.068	0.177
2016	0.066	0.052	0.002	0.002	0.000	0.006	0.009	0.009	0.003	0.012	0.013	0.066	0.177
2017	0.064	0.051	0.002	0.002	0.000	0.006	0.009	0.009	0.003	0.009	0.012	0.064	0.191
2018	0.063	0.050	0.002	0.002	0.000	0.006	0.010	0.009	0.003	0.010	0.012	0.063	0.148

Table 5.6c PM10 emissions (kt) by NFR 1990-2018

PM10 (kt)	3B1a	3B1b	3B2	3B3	3B4d	3B4e	3B4gi	3B4gii	3B4gii i	3B4gi v	3B4h	3B1a	3B1b
1990	0.203	0.122	0.002	0.086	0.000	0.006	0.189	0.031	0.003	0.227	0.026	0.203	0.122
1991	0.185	0.121	0.002	0.082	0.000	0.006	0.161	0.033	0.004	0.183	0.021	0.185	0.121
1992	0.178	0.118	0.002	0.077	0.000	0.006	0.154	0.036	0.004	0.224	0.023	0.178	0.118
1993	0.178	0.116	0.003	0.073	0.000	0.006	0.156	0.039	0.004	0.214	0.023	0.178	0.116
1994	0.174	0.114	0.003	0.073	0.000	0.006	0.158	0.042	0.004	0.201	0.026	0.174	0.114
1995	0.166	0.103	0.004	0.074	0.000	0.006	0.161	0.045	0.004	0.210	0.030	0.166	0.103
1996	0.163	0.104	0.003	0.076	0.000	0.006	0.161	0.043	0.005	0.175	0.033	0.163	0.104
1997	0.161	0.104	0.003	0.081	0.000	0.006	0.160	0.052	0.006	0.179	0.035	0.161	0.104
1998	0.157	0.101	0.003	0.076	0.000	0.006	0.147	0.059	0.008	0.165	0.032	0.157	0.101
1999	0.151	0.099	0.002	0.074	0.000	0.006	0.130	0.064	0.012	0.144	0.030	0.151	0.099
2000	0.147	0.096	0.002	0.072	0.000	0.006	0.120	0.083	0.012	0.128	0.027	0.147	0.096
2001	0.140	0.094	0.002	0.068	0.000	0.007	0.124	0.058	0.025	0.146	0.028	0.140	0.094
2002	0.135	0.094	0.002	0.070	0.000	0.007	0.124	0.062	0.029	0.110	0.027	0.135	0.094
2003	0.126	0.092	0.002	0.073	0.000	0.008	0.116	0.064	0.033	0.131	0.029	0.126	0.092
2004	0.120	0.089	0.002	0.072	0.000	0.008	0.118	0.059	0.029	0.127	0.028	0.120	0.089
2005	0.116	0.088	0.002	0.074	0.000	0.009	0.121	0.059	0.027	0.133	0.030	0.116	0.088
2006	0.112	0.088	0.003	0.071	0.000	0.009	0.118	0.058	0.027	0.114	0.028	0.112	0.088
2007	0.108	0.086	0.003	0.074	0.000	0.009	0.117	0.054	0.024	0.102	0.028	0.108	0.086
2008	0.105	0.084	0.003	0.071	0.000	0.009	0.117	0.060	0.023	0.112	0.022	0.105	0.084
2009	0.106	0.084	0.003	0.068	0.000	0.010	0.105	0.052	0.017	0.108	0.028	0.106	0.084
2010	0.106	0.084	0.003	0.064	0.000	0.010	0.119	0.050	0.015	0.102	0.028	0.106	0.084
2011	0.105	0.082	0.004	0.061	0.000	0.010	0.114	0.058	0.017	0.088	0.023	0.105	0.082
2012	0.104	0.081	0.004	0.059	0.000	0.010	0.107	0.065	0.016	0.086	0.027	0.104	0.081
2013	0.103	0.081	0.004	0.058	0.000	0.010	0.116	0.074	0.015	0.098	0.024	0.103	0.081
2014	0.104	0.080	0.004	0.055	0.000	0.010	0.123	0.079	0.016	0.082	0.026	0.104	0.080
2015	0.104	0.080	0.005	0.055	0.000	0.010	0.118	0.074	0.014	0.078	0.025	0.104	0.080
2016	0.101	0.079	0.005	0.052	0.000	0.010	0.124	0.087	0.014	0.086	0.026	0.101	0.079
2017	0.098	0.078	0.005	0.048	0.000	0.010	0.127	0.085	0.016	0.063	0.024	0.098	0.078
2018	0.096	0.076	0.005	0.046	0.000	0.010	0.135	0.092	0.016	0.072	0.024	0.096	0.076

Heavy metals

Emissions are generated in field burning of agricultural waste as described under NFR 3F.

The emission trends presented in Figure 5.6 and Table 5.7 are impacted by the volume of field burning of straw which has a declining trend.

Figure 5.6 Heavy metals from agriculture 1980-2018 Table 5.7 Heavy metal emissions from field burning of agricultural waste 1990-2018

	NFR 3F Heavy Metals (g)								
Year	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn
1980	NE	NE	NE	NE	NE	NE	NE	NE	NE
1981	NE	NE	NE	NE	NE	NE	NE	NE	NE
1982	NE	NE	NE	NE	NE	NE	NE	NE	NE
1983	NE	NE	NE	NE	NE	NE	NE	NE	NE
1984	NE	NE	NE	NE	NE	NE	NE	NE	NE
1985	NE	NE	NE	NE	NE	NE	NE	NE	NE
1986	NE	NE	NE	NE	NE	NE	NE	NE	NE
1987	NE	NE	NE	NE	NE	NE	NE	NE	NE
1988	NE	NE	NE	NE	NE	NE	NE	NE	NE
1989	NE	NE	NE	NE	NE	NE	NE	NE	NE
1990	0.003	0.027	0.005	0.000	0.005	0.002	0.002	0.001	0.024
1991	0.003	0.025	0.005	0.000	0.004	0.002	0.001	0.001	0.022
1992	0.002	0.020	0.004	0.000	0.004	0.001	0.001	0.001	0.018
1993	0.003	0.025	0.005	0.000	0.005	0.002	0.001	0.001	0.023
1994	0.002	0.024	0.005	0.000	0.004	0.002	0.001	0.001	0.022
1995	0.002	0.022	0.005	0.000	0.004	0.002	0.001	0.001	0.020
1996	0.003	0.025	0.005	0.000	0.004	0.002	0.001	0.001	0.022
1997	0.003	0.024	0.005	0.000	0.004	0.002	0.001	0.001	0.022
1998	0.002	0.019	0.004	0.000	0.003	0.001	0.001	0.001	0.016

1999	0.002	0.017	0.003	0.000	0.003	0.001	0.001	0.001	0.015
2000	0.003	0.025	0.005	0.000	0.004	0.002	0.001	0.001	0.022
2001	0.002	0.022	0.004	0.000	0.004	0.002	0.001	0.001	0.019
2002	0.003	0.024	0.005	0.000	0.004	0.002	0.001	0.001	0.020
2003	0.002	0.022	0.004	0.000	0.004	0.002	0.001	0.001	0.018
2004	0.002	0.022	0.004	0.000	0.004	0.002	0.001	0.001	0.018
2005	0.002	0.020	0.004	0.000	0.004	0.001	0.001	0.001	0.018
2006	0.002	0.018	0.004	0.000	0.003	0.001	0.001	0.001	0.016
2007	0.002	0.020	0.004	0.000	0.003	0.001	0.001	0.001	0.017
2008	0.002	0.019	0.004	0.000	0.003	0.001	0.001	0.001	0.017
2009	0.002	0.019	0.004	0.000	0.003	0.001	0.001	0.001	0.016
2010	0.001	0.013	0.003	0.000	0.002	0.001	0.001	0.001	0.011
2011	0.002	0.016	0.003	0.000	0.002	0.001	0.001	0.001	0.013
2012	0.002	0.016	0.003	0.000	0.002	0.001	0.001	0.001	0.013
2013	0.002	0.020	0.004	0.000	0.003	0.001	0.001	0.001	0.017
2014	0.002	0.019	0.004	0.000	0.003	0.001	0.001	0.001	0.016
2015	0.002	0.019	0.004	0.000	0.003	0.001	0.001	0.001	0.016
2016	0.002	0.018	0.004	0.000	0.003	0.001	0.001	0.001	0.015
2017	0.002	0.020	0.004	0.000	0.003	0.001	0.001	0.001	0.017
2018	0.002	0.015	0.003	0.000	0.002	0.001	0.001	0.001	0.013

POPs

HCB emissions originate from the use of pesticides while PAH and PCDD/F emissions originate from field burning of agricultural waste (NFR 3F) (Figure 5.7).

Figure 5.7. POP emissions from agricultural sources 1990-2018

Emission trends presented in Figure 5.7 and Table 5.8 are impacted by the volume of field burning of straw and agricultural waste, which both have a declining trend. The decrease in HCB emissions in early 1990's is due to the strong decrease in the use of Simazine, which was forbidden in 2005, and the slight increase in 2011 due to the replacement by a new herbicide which came into market (selling permit granted 12.4.2011).

	PCDD/F (3F)	HCB (3Df)	B(a)P (3F)	B(b)F (3F)	B(k)F (3F)	l(1,2,3-cdP) (3F)
	g Ì-Teq	kg	ť	ť	ť	ť
1990	0.023	0.057	0.004	0.011	0.004	0.002
1991	0.021	0.039	0.003	0.01	0.003	0.002
1992	0.017	0.024	0.003	0.008	0.003	0.002
1993	0.021	0.138	0.003	0.01	0.003	0.002
1994	0.020	0.123	0.003	0.01	0.003	0.002
1995	0.019	0.054	0.003	0.009	0.003	0.002
1996	0.021	0.073	0.003	0.01	0.003	0.002
1997	0.020	0.091	0.003	0.01	0.003	0.002
1998	0.015	0.086	0.002	0.007	0.002	0.002
1999	0.014	0.081	0.002	0.007	0.002	0.001
2000	0.020	0.023	0.003	0.01	0.003	0.002
2001	0.018	0.017	0.003	0.008	0.003	0.002
2002	0.018	0.012	0.003	0.009	0.003	0.002
2003	0.017	0.012	0.003	0.008	0.003	0.002
2004	0.017	0.012	0.003	0.008	0.003	0.002
2005	0.017	0.011	0.003	0.008	0.003	0.002
2006	0.015	0.008	0.002	0.007	0.002	0.001
2007	0.016	0.006	0.003	0.008	0.003	0.002
2008	0.016	0.008	0.003	0.008	0.003	0.002
2009	0.015	0.012	0.002	0.007	0.002	0.002
2010	0.010	0.184	0.002	0.005	0.002	0.001
2011	0.012	0.157	0.002	0.006	0.002	0.001
2012	0.012	0.091	0.002	0.006	0.002	0.001
2013	0.016	0.016	0.003	0.008	0.003	0.002
2014	0.015	0.036	0.002	0.007	0.002	0.001
2015	0.015	0.021	0.002	0.007	0.002	0.001
2016	0.014	0.021	0.002	0.007	0.002	0.001
2017	0.016	0.034	0.002	0.007	0.002	0.002
2018	0.012	0.034	0.002	0.006	0.002	0.001

Table 5.8 POP emissions from agriculture 1990-2018

5.3 Manure Management (NFR 3B)

Changes in chapter	
February 2020	KS, JMP, JG, JM

Source category description

This sector covers management of manure from domestic livestock.

Figure 5.8 K. Inha: Finnish agriculture, series of photographs, 1899, photographed scenes of Finnish agricultural work for the World's Fair (Exposition Universelle) in Paris in 1900.

Finland reports emissions from manure management of cattle (including dairy cows, suckler cows, heifers, bulls and calves), swine, horses, goats, sheep, poultry, fur animals and reindeer. Mules, asses, camels and buffalos are not farmed in Finland (Table 5.9).

Table 5.9 Animal ca	ategories in Finland
---------------------	----------------------

NFR	Animal category
3B1a	Cattle, dairy
3B1b	Cattle, non-dairy
3B2	Sheep
3B3	Swine
3B4a	Buffalo - not farmed in Finland
3B4d	Goats
3B4e	Horses

NFR	Animal category
3B4f	Mules and asses - not farmed in Finland
3B4gi	Laying hens
3B4gii	Broilers
3B4giii	Turkeys
3B4giv	Other poultry - cockerels, broiler hens, chicken and other poultry
3B4h	Other - reindeer and fur animals

Methodological issues

Documentation of the revised method is presented below and in a separate document Grönroos et al 2017 (saved in the submission folder).

Calculation model for agricultural emissions

Since 1998, ammonia emissions originating from manure have been calculated by using the national nitrogen model, which is based on the nitrogen flow approach. In this approach, flow of total ammoniacal nitrogen (TAN) and total nitrogen (tot-N) are followed through the manure management system so that the more NH_3 and other nitrogen compounds are emitted at the previous stage of the manure management system the less TAN and tot-N remain available for emissions later. The model includes also ammonia emission calculation for mineral N-fertilisers. The documentation of the previous calculation systems was published by Grönroos et al. in 1998 (in Finnish) and in 2009 (in English). Originally, the model was used only for ammonia emission modelling, but it was supplemented later with N_2O and NO and N_2 emission calculation.

The model was revised in 2016-2017 (Figure 5.9) and includes currently gaseous nitrogen emissions (N_2 , NH_3 , N_2O and NO) thus integrating the calculation of nitrogen emissions between the greenhouse gas and air pollutant emission inventories. It also enables reporting of emissions at the level of detail in the reporting guidelines of the UNECE CLRTAP and the UNFCCC.

The revision of the model included updating and expanding the model to meet the most recent requirements of the emission inventory guidelines of UNECE (EMEP/EEA 2019) and UNFCCC (IPCC 2006). The revision included change of the nitrogen flow approach to a entirely total ammoniacal nitrogen (TAN) based approach. In the previous model version, the approach was mainly based on the total nitrogen.

Nitrogen from bedding materials was also included into the calculation. In addition to the ammonia (NH_3) and direct and indirect nitrous oxide (N_2O) emissions (originating from manure management and managed soils), emissions of nitric oxide (NO) and di-nitrogen (N_2) from manure management are calculated, as well as NO emissions from application of manure and mineral fertilisers.

NMVOC emission calculation for manure management, manure applied to soils, urine and dung deposited by grazing animals and cultivated crops was added to the calculation system (see Table 5.6 and Chapter 2.2 in Grönroos et al., 2017). Further, the changes enabled the establishment of the Finnish normative manure system (see Luostarinen et al. 2017), which was built simultaneously with the revision of this model. Particle emissions from animal husbandry and field operations (cultivation, harvesting, cleaning and drying) were added to the model in 2019.

Figure 5.9 Revised calculation model for agriculture (Grönroos et al., 2017)

Table 5.10 Source categories and emissions included in the Finn	nish Agricultural Emissions Calculation
System in 2019.	

NFR	Category name	NH ₃	NOx	N ₂ O direct	N ₂ O indirect	N ₂	NMVOC	РМ
3B	Manure management (animal categories: see chapter 2.1.1.1)	х	х	х	х	х	х	х
3Da1	Inorganic N-fertilizers (includes also urea application)	х	х	х	х		Х	
3Da2a	Animal manure applied to soils	х		х	Х		Х	
3Da3	Urine and dung deposited by grazing animals	х		х	Х		Х	
3De	Cultivated crops						Х	
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products							x

The model is updated yearly, a new reporting year is added every year and the previous years are updated when new information is available.

Basis of calculation

Calculation of the gaseous nitrogen emissions from manure management is based on the mass or nitrogen flow approach, as described in the model documentation (Grönroos et al. 2017), and in the UNECE and UNFCCC emission inventory guidebooks. In the method used, the pathways of nitrogen are followed starting from the nitrogen excretion of the livestock and ending at the application of manure to the fields (Figure 5.10). In each manure management stage, the gaseous losses of nitrogen are calculated. The calculation is carried out per each animal category (Table 5.11.a and 5.11.b) and for each manure management system.

In general, the Finnish agricultural ammonia emission calculation system follows the principles of the Tier 2 method described in the EMEP/EEA Guidebook 2019. However, it has some features, which

move it towards the Tier 3 method, such as the greater number of animal and manure categories than listed under Tier 2, and the inclusion of the emission abatement measures.

The manure management systems considered are (manure type acronym in brackets):

- slurry (S)
- deep litter (DL)
- solid manure system (SMS), divided into two separate systems:
 - o farm yard manure system (FYM; urine absorbed in bedding material)
 - solid separation system (SS; urine and faeces managed separately, produces two kind of manure: dung with bedding (SSD), and urine (SSU)).

In contrast to the previous calculation systems, nitrogen flow approach is applied to total ammoniacal nitrogen (TAN) of manure in each stage of the manure management system instead of total nitrogen. This means that also the emissions of gaseous nitrogen compounds (except nitrous oxide emissions) are estimated based on the TAN content of manure. Because the effects of dietary changes or nitrogen transformation during the manure management chain affect the TAN content of manure and TAN is the basis of ammonia and other forms of gaseous N emissions, more precise emission estimates are now attained.

Due to the needs of nitrous oxide emission calculation, total nitrogen content of manure was also included in the nitrogen flow approach, as well as nitrogen from bedding materials. Moreover, the revised system considers also the transformation of manure nitrogen during manure storage: immobilisation of solid manure TAN to organic form and mineralisation of slurry organic nitrogen to TAN.

The main manure management phases considered in the calculation system are:

- animal housing,
- manure storing,
- manure spreading (included in the managed soils category in GHG emission inventory),
- outdoor yards.

Emissions from grazing are included in the model. In the GHG emission inventory, emissions from grazing are included in the category of managed soils.

The emission calculation model is part of the Finnish normative manure system (Luostarinen et al. 2017). The normative manure system is used to calculate normative manure quality and quantity data for various livestock animal categories, to be used e.g. in policymaking, research, technology development and manure fertilisation plans on farms. Major inputs from normative manure system to the agricultural emissions calculation system are nitrogen excretion rates for each animal category (divided between faeces and urine), and effects of the nitrogen transformation processes to quantity of TAN in a manure management system.

Figure 5.10. Schematic diagram of the N flows in manure management (incl. manure application, grazing and dry lots) and the related gaseous nitrogen emission calculation system used for calculating the NH_{3} , N_2O , NO and N_2 emissions from manure management in Finland. Nitrogen transformation processes (immobilisation and mineralisation) are shown, as well as the link between emission calculation system and the Finnish normative manure system (see text for more information). Broad blue arrows: emissions of N-compounds to the atmosphere. Emissions are calculated separately for each animal category and manure management system. For clarity, all manure management systems are not shown in the figure.

CATTLE	PIGS	POULTRY	OTHER ANIMALS
Dairy cow, high yielding	Farrowing sow + piglets (<10-12 kg)	Laying hen breeder	Horse
Dairy cow, indigenous	Gestating sow	Cockerel (laying hen breeder, male)	
	Mating sow	Broiler	Pony (120-140)
Suckler cow, high yielding	Boar (50- kg)	Broiler breeder hen	Pony, little (<120)
Suckler cow, indigenous	Fattening pig (50- kg)	Broiler breeder, male	
		Chicken	Ewe
Heifer, beef (2- yrs)	Weaned pig (<30 kg)		Ram
Heifer, beef (1-2 yrs)	Weaned pig (<50 kg)	Groving turkey	Lamb
Heifer, dairy (2- yrs)		Turkey breeder hen	
Heifer, dairy (1-2 yrs)		Turkey breeder male	Female goat
Heifer, small (>2 yrs)		Other poultry	Male goat
Heifer, small (1-2 yrs)			Goatling
Bull, beef (>2 yrs)			Fox breeder, female

Table 5.11.a. Animal categories considered in the emission calculation system; the detailed categorisation. The animal categories are the same as those in the Finnish normative manure system (Luostarinen et al. 2017).

Bull, beef (1-2 yrs)		Fox breeder, male
Bull, dairy (>2 yrs)		Fox grover
Bull, dairy (1-2 yrs)		
Bull, indigenous (1-2 yrs)		Mink breeder, female
Bull, indigenous (>2 yrs)		Mink breeder, male
		Mink grover
Calf, female, beef (< 6 m)		Reindeer
Calf, female, beef (6-12 m)		
Calf, female, dairy (< 6 m)		
Calf, female, dairy (6-12 m)		
Calf, female, indigenous (< 6 m)		
Calf, female, indigenous (6-12 m)		
Calf, male, beef (< 6 m)		
Calf, male, beef (6-12 m)		
Calf, male, dairy (< 6 m)		
Calf, male, dairy (6-12 m)		
Calf, male, indigenous (< 6 m)		
Calf, male, indigenous (6-12 m)		

Table 5.11.b. Animal categories in the calculation system; the simpler categorisation. The animal categories are the same as those in the Finnish normative manure system (Luostarinen et al. 2017).

CATTLE	PIGS	POULTRY	LS
Dairy cow	Sow (with piglets)	Laying hen breeder (female)	Horse
Suckler cow	Boar (50- kg)	Cockerel (laying hen breeder, male)	Pony
Heifer >1 yr	Fattening pig (50- kg)	Broiler	Sheep
Bull >1 yr	Weaned pig (20-50 kg)	Broiler breeder hen	Goat
Calf <1 yr		Broiler breeder, male	Fox and racoon
		Chicken	Mink and fitch
		Turkey	Reindeer
		Other poultry	

A detailed description of the calculation of emissions is provided in the document Grönroos et al., 2017, Chapter 2.1.1.2 (available in the 2018 EIONET CDR submission folder).

Activity data

Animal numbers are received from Statistical services of the Natural resources institute Finland (Luke), the Finnish Trotting and Breeding Association of horses (Suomen Hippos) and from the statistics of the Finnish Fur Breeders' Association, as presented in Tables 5.20a-c.

The number of reindeers in the model is from the Yearbook of Farm Statistics (TIKE, 2019) and corresponds to the number of reindeers left alive during the reindeer herding year.

Emission factors

<u>Ammonia</u>

The domestic emission factors calculated on basis of national studies (Grönroos et al 2017) are presented in Table 5.12 and the tables are updated for the Informative Inventory Report of 2019. The emission factors include emissions from animal shelter, storing, spreading, pasturing and dry lot.

Due to the cold climate, grazing period is relatively short in Finland. For example, for sheep the pasturing period is averagely 153 days (2016) whereas in the EMEP/EEA (2016) guidebook, the housing period for sheep is 30 days thus implicating a grazing period of 335 days. In Finland, the short grazing period might lead to the higher manure management IEFs of some animal categories.

For sheep, the reason for increase in IEF (manure management) is in manure management data: in 2000 it was assumed that 90% of sheep manure is managed as deep litter and 10% as FYM. However, manure survey in 2013 provided new data on manure management practices. Based on the survey results, only 50% of sheep manure was managed as deep litter in 2013. Due to the deep litter TAN immobilisation processes during housing, ammonia evaporation potential is much lower than that of FYM. So the decrease in the share of deep litter system explains the increase of emissions. Additionally, N excretion of sheep has slightly increased from 2000 to 2016 (9.32 -> 9.97 kg tot-N/head/a). (Grönroos et al. 2017).

Figure 5.11 Ammonia emissions from NFR 3B categories 1980-2018

Year	Dairy cow	Suckler cow	Heifer >1 yr	Bull >1 yr	Calf <1 yr	Sow (with	Boar (50-	Fattening	Veaned pig
1980	16.95	11.18	7.91	11.65	6.01	8.30	6.61	6.17	2.62
1981	17.23	11.15	7.95	11.82	6.14	8.43	6.58	6.16	2.60
1982	17.51	11.12	7.98	11.99	6.27	8.56	6.55	6.15	2.58
1983	17.71	11.12	7.99	12.14	6.35	8.63	6.52	6.10	2.56
1984	18.08	11.06	8.06	12.34	6.53	8.83	6.49	6.12	2.54
1985	18.37	11.03	8.09	12.51	6.66	8.96	6.45	6.11	2.52
1986	18.64	11.04	8.13	12.61	6.81	9.13	6.44	6.11	2.51
1987	18.89	11.06	8.19	12.68	7.01	9.35	6.60	5.97	2.42
1988	19.14	11.08	8.23	12.71	7.05	9.49	6.63	6.01	2.41
1989	19.70	11.10	8.45	13.20	7.32	9.57	6.56	6.02	2.40
1990	21.40	11.12	8.73	13.73	7.57	9.61	6.64	6.05	2.39
1991	21.54	11.12	8.87	14.00	7.68	9.49	6.69	6.02	2.41
1992	21.76	11.12	8.90	14.03	7.77	9.56	6.61	6.02	2.44
1993	22.26	11.12	9.32	14.47	8.11	9.55	6.59	6.00	2.47
1994	22.94	11.12	9.50	14.82	8.29	9.47	6.55	6.04	2.50
1995	23.18	11.11	9.55	14.91	8.42	9.28	6.58	6.06	2.47
1996	23.50	11.36	9.63	15.10	8.48	9.27	6.55	6.03	2.43
1997	24.41	11.62	9.78	15.25	8.61	9.27	6.80	6.03	2.44
1998	25.02	11.87	9.87	15.44	8.73	9.32	6.83	6.07	2.45
1999	26.12	12.13	9.97	15.66	8.95	9.33	6.15	6.07	2.47
2000	27.42	12.40	10.29	16.16	9.26	9.37	6.11	6.07	2.48
2001	28.63	12.52	10.55	16.74	9.54	9.32	6.48	6.10	2.50
2002	29.79	12.65	10.84	17.65	9.86	9.58	6.62	6.15	2.53
2003	30.98	12.73	11.08	18.44	10.21	9.77	6.69	6.14	2.56
2004	32.34	13.08	11.39	19.01	10.53	9.95	6.80	6.15	2.57
2005	33.41	13.05	11.46	19.19	10.67	10.04	6.96	6.18	2.60
2006	33.79	12.74	11.77	19.43	10.64	10.26	7.17	6.19	2.60
2007	34.22	12.41	12.14	19.88	10.70	10.47	7.25	6.14	2.58
2008	34.48	12.20	12.44	19.86	10.63	10.69	7.22	6.11	2.56
2009	35.02	11.93	12.77	19.81	10.65	10.75	7.25	6.05	2.55
2010	35.57	11.91	13.24	20.22	10.77	10.95	7.37	6.01	2.52
2011	35.59	11.73	13.43	19.97	10.65	11.36	7.46	5.94	2.50
2012	35.54	11.27	13.46	19.49	10.39	11.07	7.33	5.85	2.46
2013	35.34	11.30	13.39	19.38	10.36	11.30	7.35	5.85	2.46
2014	35.64	11.41	13.53	20.00	10.58	11.44	7.44	5.79	2.46
2015	33.34	11.42	12.87	19.29	10.17	10.89	7.00	5.44	2.31
2016	32.89	12.16	12.86	19.35	10.18	11.04	6.95	5.35	2.28
2017	32.95	12.10	12.92	19.32	10.25	10.88	6.95	5.25	2.26
2018	32.75	12.12	12.87	19.54	10.24	11.18	7.01	5.23	2.25

Table 5.12a NH₃ emissions factors for Cattle and swine (kg NH₃ / animal) (Grönroos et al., 2017).

Table 5.12b NH₃ emissions factors for Poultry (kg NH₃ / animal) (Grönroos et al., 2017).

Year	Laying hen breeder (female)	Cockerel (laying hen breeder, male)	Broilers	Broiler hens	Chicken	Turkey	Other poultry
1980	0.20	0.23	0.07	0.00	0.00	0.07	0.17
1981	0.20	0.23	0.07	0.00	0.00	0.07	0.17
1982	0.20	0.23	0.07	0.00	0.00	0.07	0.17
1983	0.20	0.23	0.07	0.00	0.00	0.07	0.17
1984	0.20	0.23	0.07	0.00	0.00	0.07	0.17
1985	0.18	0.23	0.07	0.00	0.00	0.07	0.17
1986	0.18	0.23	0.07	0.00	0.00	0.08	0.18
1987	0.17	0.23	0.07	0.00	0.00	0.08	0.18
1988	0.17	0.23	0.07	0.00	0.00	0.08	0.18
1989	0.16	0.23	0.07	0.00	0.00	0.08	0.18

1990	0.16	0.23	0.07	0.16	0.00	0.08	0.18
1991	0.17	0.23	0.07	0.16	0.00	0.08	0.20
1992	0.17	0.23	0.06	0.16	0.00	0.09	0.20
1993	0.18	0.23	0.07	0.16	0.00	0.09	0.22
1994	0.18	0.23	0.07	0.16	0.00	0.09	0.21
1995	0.17	0.23	0.07	0.17	0.00	0.09	0.22
1996	0.18	0.23	0.06	0.17	0.00	0.09	0.21
1997	0.18	0.23	0.06	0.17	0.00	0.09	0.22
1998	0.18	0.23	0.07	0.17	0.00	0.09	0.22
1999	0.18	0.23	0.07	0.17	0.00	0.09	0.23
2000	0.18	0.23	0.07	0.17	0.00	0.09	0.24
2001	0.18	0.23	0.07	0.16	0.00	0.09	0.24
2002	0.17	0.23	0.07	0.16	0.00	0.09	0.24
2003	0.18	0.23	0.07	0.16	0.00	0.09	0.24
2004	0.18	0.23	0.07	0.16	0.00	0.09	0.25
2005	0.17	0.23	0.07	0.16	0.00	0.09	0.25
2006	0.17	0.22	0.07	0.16	0.00	0.09	0.24
2007	0.17	0.22	0.07	0.16	0.00	0.09	0.24
2008	0.17	0.21	0.08	0.16	0.00	0.09	0.24
2009	0.17	0.21	0.08	0.16	0.00	0.08	0.26
2010	0.16	0.20	0.08	0.16	0.00	0.08	0.26
2011	0.16	0.20	0.08	0.16	0.00	0.08	0.26
2012	0.17	0.19	0.08	0.16	0.00	0.08	0.26
2013	0.17	0.19	0.08	0.16	0.00	0.08	0.27
2014	0.16	0.19	0.08	0.16	0.00	0.08	0.26
2015	0.17	0.19	0.08	0.16	0.00	0.08	0.26
2016	0.17	0.19	0.08	0.16	0.00	0.08	0.26
2017	0.17	0.19	0.08	0.16	0.00	0.08	0.27
2018	0.17	0.19	0.08	0.16	0.00	0.08	0.27

Table 5.12c NH_3 emissions factors for other animals (kg NH_3 / animal) (Grönroos et al., 2017).

Year	Horse	Pony	Sheep	Goat	Fox and racoon	Mink and fitch	Reindeer
1980	16.06	11.28	1.50	1.89	0.84	0.49	0.87
1981	16.07	11.31	1.48	1.87	0.84	0.49	0.87
1982	16.07	11.35	1.47	1.86	0.84	0.49	0.87
1983	15.99	11.32	1.46	1.85	0.84	0.49	0.87
1984	16.07	11.41	1.44	1.82	0.84	0.49	0.87
1985	16.07	11.45	1.43	1.81	0.84	0.49	0.87
1986	16.14	11.43	1.42	1.79	0.84	0.49	0.87
1987	16.05	11.64	1.40	1.78	0.84	0.49	0.87
1988	16.14	11.67	1.39	1.76	0.84	0.49	0.87
1989	16.22	11.76	1.38	1.75	0.84	0.49	0.87
1990	16.25	11.79	1.37	1.73	0.84	0.49	0.87
1991	16.27	11.78	1.39	1.75	0.85	0.49	0.87
1992	16.27	11.82	1.42	1.77	0.86	0.50	0.87
1993	16.39	11.87	1.45	1.79	0.87	0.50	0.87
1994	16.47	11.97	1.48	1.81	0.87	0.50	0.87
1995	16.50	12.04	1.49	1.84	0.88	0.50	0.87
1996	16.50	11.99	1.52	1.84	0.89	0.51	0.87
1997	16.43	12.03	1.52	1.84	0.90	0.51	0.87
1998	16.35	12.01	1.54	1.84	0.91	0.51	0.87
1999	16.37	11.99	1.57	1.84	0.92	0.51	0.87
2000	16.39	11.96	1.60	1.84	0.92	0.52	0.87

2001	16.69	12.14	1.62	1.83	0.96	0.52	0.87
2002	17.01	12.35	1.64	1.83	0.99	0.52	0.87
2003	17.32	12.53	1.65	1.83	1.02	0.52	0.87
2004	17.63	12.63	1.65	1.83	1.05	0.52	0.87
2005	17.87	12.70	1.69	1.83	1.09	0.52	0.87
2006	17.75	12.57	1.74	1.86	1.12	0.52	0.87
2007	17.69	12.47	1.77	1.89	1.15	0.52	0.87
2008	17.62	12.41	1.80	1.93	1.18	0.52	0.87
2009	17.68	12.45	1.83	1.97	1.18	0.52	0.87
2010	17.67	12.49	1.87	2.01	1.18	0.52	0.87
2011	17.80	12.54	1.91	2.05	1.18	0.52	0.87
2012	17.90	12.62	1.96	2.10	1.18	0.52	0.87
2013	17.98	12.66	1.95	2.10	1.18	0.52	0.87
2014	18.01	12.76	1.95	2.10	1.18	0.52	0.87
2015	18.06	12.85	1.95	2.10	1.18	0.52	0.87
2016	18.17	12.96	1.95	2.10	1.18	0.52	0.87
2017	18.16	12.95	1.95	2.10	1.18	0.52	0.87
2018	18.14	12.99	1.95	2.10	1.18	0.52	0.87

Particle emissions

Particle emissions are generated in manure management, harvesting and field preparation, storage and handling of agricultural crops and fertilizers and field burning of agricultural wastes and have been included in the inventory since the submission in 2004. Figure 5.12 below presents the PM2.5 emissions from manure management.

Figure 5.12 PM2.5 emissions from NFR 3B categories 1990-2018

According to the Guidebook, particle emissions occur from both housed and free-range animals while the emission factors presented are for housed animals only. The most important parameters impacting particle emissions are feeding conditions, animal activity and bedding material.

In the 2019 submission the calculation of particulate matter emissions for manure management was revised to the Tier 2 method presented in Guidebook 2016, and implemented as Equation 1 below describes.

Equation 1. Particle emissions from animal husbandry for a single animal category

$$E_{PM \, i,j} = AAP_{i,j} * x_{i,j,house} * \sum \left(x_{mms,i,j} * EF_{mms,j} \right)$$

where

i	= Inventory year
j	= Animal categor
Ерм	= PM emissions (TSP, PM10, PM2.5) for an animal category (in kg/a)
AAP	= Annual average population
Xhouse	= Share of time the animals spend in the animal house (in a/a)
X _{mms}	= Portion of manure that is handled as slurry, deep litter or solid manure.
EF	= Emission factor (kg AAP-1 a-1)

The methodology remains by principle the same as in previous submissions, but the revised calculation introduces deep litter and previously absent animal categories into calculation. Emission factors are updated to correspond to the Guidebook of 2016 and presented in Table 5.13. Livestock numbers for 1990-2018 are presented in Tables 5.20a-c.

Table 5.13a Tier 1 particle emission factors for animal husbandry (Guidebook 2016, Table 3.5) and portions of manure handled as slurry, deep litter and solid manure per animal category for 2018.

	Tier 1 Emission factor (kg AAP ⁻¹ a ⁻¹)				Portion of manure handled as:			
Animal Category	TSP	PM10	PM2.5		Slurry	Deep litter	Solid manure	
Dairy cow	1.38	0.63	0.41		0.73	0.00	0.27	
Suckler cow	0.59	0.27	0.18		0.06	0.32	0.62	
Heifer >1 yr	0.59	0.27	0.18		0.57	0.08	0.35	
Bull >1 yr	0.59	0.27	0.18		0.59	0.11	0.30	
Calf <1 yr	0.34	0.16	0.1		0.43	0.16	0.41	
Sow (with piglets)	0.62	0.17	0.01		0.87	0.00	0.13	
Boar (50- kg)	0.62	0.17	0.01		0.87	0.00	0.13	
Fattening pig (50- kg)	1.05	0.14	0.006		0.98	0.01	0.01	
Veaned pig (20-50 kg)	0.27	0.05	0.002		0.90	0.04	0.06	
Laying hen breeder (female)	0.19	0.04	0.003		0.09	0.22	0.69	
Cockerel (laying hen breeder, male)	0.19	0.04	0.003		0.00	0.50	0.50	
Broiler	0.04	0.02	0.002		0.00	1.00	0.00	
Broiler breeder hen	0.04	0.02	0.002		0.00	1.00	0.00	
Broiler breeder, male	0.04	0.02	0.002		0.00	1.00	0.00	
Chicken	0.14	0.14	0.02		0.00	0.40	0.60	
Turkey	0.11	0.11	0.02		0.00	1.00	0.00	
Other poultry	0.14	0.14	0.02		0.00	0.40	0.60	
Horse	0.48	0.22	0.14		0.00	0.13	0.87	
Pony	0.48	0.22	0.14		0.00	0.13	0.87	

Sheep	0.14	0.06	0.02	0.00	0.50	0.50
Goat	0.14	0.06	0.02	0.00	0.50	0.50
Fox and racoon	0.018	0.008	0.004	0.00	0.00	1.00
Mink and fitch	0.018	0.008	0.004	0.00	0.00	1.00
Reindeer	0.018	0.008	0.004	0.00	0.00	1.00

The parameter EF_{mms} of Equation 1 for technology specific emission factors are derived by applying the Tier 1 emission factor to the share of manure management systems present for each animal category with the assumption of slurry and deep litter systems having PM emission rates half of those in solid manure systems. This assumption is based on notes in the Guidebook 2016 section A1.2.1 for particulate matter. The relative difference between slurry and solid manure hereby differs from the corresponding figures presented in Guidebook 2013, for which some animal categories suggested higher emission rates for slurry-based systems.

Data on grazing times (pasturing period in days), manure handling systems (deep litter, slurry or solid manure) and indoor/outdoor times (% of pastured animals, animals inside in nights during pasturing period, house inside in nights) presented in Table 5.6 were updated 2014 according to domestic studies (Grönroos et al., 2009/2014) for the years 2006-2012. Detailed information on these are available in Grönroos al., 2009/2015 for years the 1990, 1995, 2000 and 2005. The values for the year 1990 are used over the period of 1990-1994 and the year 1995 values over the period of 1996-1999 etc.

	Grazing times, pasturing period (days)							
	1990	1995	2000	2005	2015			
Dairy cows	125	125	125	125	112			
Suckler cows	140	140	140	140	171			
Bulls	0	0	0	0	161			
Calves < 1 yr	100	100	100	100	127			
Heifers >1 yr	140	140	140	140	134			
Horses	140	140	140	140	180			
Ponies	140	140	140	140	180			
Sheep with lambs	140	130	130	130	153			
Goat with gilts	140	130	130	130	153			
Fattening pigs	0	0	0	0	0			
Sows (with piglets)	90	0	0	0	0			
Boars	90	0	0	0	0			
Weaned pigs (20-50kg)	0	0	0	0	0			
Reindeer	365	365	365	365	365			

Table 5.14a Parameters by animal category in five year intervals: grazing times, manure handling and outdoor/ indoors times

	Percentage of pastured animals (%)								
	1990	1995	2000	2005	2015				
Dairy cows	90	90	90	90	69				
Suckler cows	90	95	95	95	92				
Bulls	0	0	0	0	9				
Calves < 1 yr	30	25	25	25	31				
Heifers >1 yr	95	90	90	90	69				
Horses	95	95	95	95	97				
Ponies	95	95	95	95	97				
Sheep with lambs	95	90	90	90	90				
Goat with gilts	95	90	90	90	90				

Reindeer	100	100	100	100	100
	Animals	inside in nights d	uring pasturing	period (%)	
	1990	1995	2000	2005	2015
Dairy cows	60	75	90	100	100
		Hours inside in	nights (hours)		
	1990	1995	2000	2005	2015
Dairy cows	12	12	12	12	11

The parameters of Table 5.14a contribute to the formation of the parameter x_{house} of equation 1. The complete series of the share of time the animals spend in housing is presented in Table 5.14b below.

Table 5.14b Share of time the animals spend in the animal house (in a/a) for animal categories with annual variation.

Year	Dairy cow	Suckler cow	Heifer >1 yr	Bull >1 yr	Calf <1 yr	Sow (with piglets)	Horse	Pony	Sheep	Goat
1980	0.74	0.65	0.65	0.96	0.86	0.90	0.64	0.64	0.68	0.68
1981	0.74	0.65	0.65	0.96	0.87	0.91	0.64	0.64	0.68	0.68
1982	0.74	0.65	0.65	0.96	0.87	0.92	0.64	0.64	0.67	0.67
1983	0.74	0.65	0.65	0.96	0.88	0.93	0.64	0.64	0.67	0.67
1984	0.74	0.65	0.65	0.96	0.88	0.94	0.64	0.64	0.66	0.66
1985	0.74	0.65	0.65	0.96	0.89	0.95	0.64	0.64	0.66	0.66
1986	0.74	0.65	0.64	0.96	0.90	0.96	0.64	0.64	0.65	0.65
1987	0.74	0.65	0.64	0.96	0.90	0.97	0.64	0.64	0.65	0.65
1988	0.74	0.65	0.64	0.96	0.91	0.98	0.64	0.64	0.64	0.64
1989	0.74	0.65	0.64	0.96	0.91	0.99	0.64	0.64	0.64	0.64
1990	0.78	0.65	0.64	0.96	0.92	0.99	0.64	0.64	0.64	0.64
1991	0.79	0.65	0.64	0.96	0.92	0.99	0.64	0.64	0.64	0.64
1992	0.79	0.65	0.64	0.96	0.92	1.00	0.64	0.64	0.65	0.65
1993	0.80	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.66	0.66
1994	0.80	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.67	0.67
1995	0.81	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.68	0.68
1996	0.81	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.68	0.68
1997	0.82	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.68	0.68
1998	0.82	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.68	0.68
1999	0.83	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.68	0.68
2000	0.83	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.68	0.68
2001	0.83	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.68	0.68
2002	0.84	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.68	0.68
2003	0.84	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.68	0.68
2004	0.84	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.68	0.68
2005	0.85	0.64	0.65	0.96	0.93	1.00	0.64	0.64	0.68	0.68
2006	0.85	0.63	0.67	0.96	0.93	1.00	0.64	0.64	0.68	0.68
2007	0.86	0.62	0.68	0.96	0.92	1.00	0.64	0.64	0.67	0.67
2008	0.861	0.61	0.70	0.96	0.92	1.00	0.64	0.64	0.67	0.67

2009	0.87	0.61	0.71	0.96	0.91	1.00	0.64	0.64	0.67	0.67
2010	0.87	0.60	0.73	0.96	0.91	1.00	0.64	0.64	0.66	0.66
2011	0.88	0.59	0.74	0.96	0.90	1.00	0.64	0.64	0.66	0.66
2012	0.88	0.58	0.76	0.96	0.90	1.00	0.64	0.64	0.65	0.65
2013	0.88	0.58	0.76	0.96	0.90	1.00	0.64	0.64	0.65	0.65
2014	0.88	0.59	0.76	0.96	0.90	1.00	0.64	0.64	0.65	0.65
2015	0.88	0.59	0.76	0.96	0.90	1.00	0.64	0.64	0.65	0.65
2016	0.89	0.59	0.77	0.96	0.90	1.00	0.64	0.64	0.65	0.65
2017	0.89	0.59	0.77	0.96	0.90	1.00	0.64	0.64	0.65	0.65
2018	0.89	0.59	0.77	0.96	0.90	1.00	0.64	0.64	0.65	0.65

Fur animals and poultry are considered to stay always indoors ($x_{house} = 1$) and reindeer always outdoors ($x_{house} = 0$).

NMVOC emissions

Emissions of NMVOC in manure management originate from silage store and feed, manure in the barns, outdoor manure stores, field application of manure and grazing of animals. In-house emissions are reported under NFR 3B (Figure 5.13) and emissions of field application of manure and grazing under NFRs 3Da2a and 3Da3, respectively.

Figure 5.13 NMVOC emissions from NFR 3B categories 1980-2018

The calculation method for NMVOC emissions is presented in detail in Grönroos et al., 2017 (in the reporting folder).

The main parameters for calculation are gross energy intake (GEI as megajoules MJ/a), volatile solids excreted (VS), annual average population (AAP) which are provided by Natural Resources Institute Finland (Luke). Detail increasing parameters such as the share of time the animals spend

in housing, fractions of silage store and feed (Table 5.18) are national values. Data is available for GEI and VS for the years 1990-2018 and for AAP for the years 1980-2018. The livestock classification varies between the data sources. Gross energy intake (Table 5.13) is available for dairy cows, non-dairy cattle, suckler cows, bulls (age over 1 year), heifers, calves (under 1 year) and non-dairy gross energy. Data of gross energy intakes as required by the EF of cattle are presented in Table 5.15. For VS (Table 5.17), primary data is available for dairy cows, non-dairy cattle, suckler cows, bulls (age over 1 year), swine, sow, piglets, fattening pigs, boars, weaned pigs, sheep, goats, horses, poultry, laying hens, chickens, cockerels, broiler hens, broilers, turkeys, other poultry (ducks), other animals, reindeer, fur animals, mink and fitch, fox and raccoon.

Emission factors from EMEP/EAA Guidebook 2019 are presented in Table 5.15.

NFR	Animal category	EFsilage_feeding	EFhouse	EFgrazing	Unit
3B1a	Dairy cattle	2,00E-04	3,53E-05	6,90E-06	kg NMVOC kg/MJ feed
3B1b	Non-dairy cattle	2,00E-04	3,53E-05	6,90E-06	kg NMVOC kg/MJ feed
3B2	Sheep	1,08E-02	1,61E-03	2,35E-05	kg NMVOC/kg VS excreted
3B3	Swine (fattening pigs	1,70E-03			kg NMVOC/kg VS excreted
3B3	Swine (sows)		7,04E-03		kg NMVOC/kg VS excreted
3B4a	Buffalo	1,08E-02	1,61E-03	2,35E-05	kg NMVOC/kg VS excreted
3B4d	Goats	1,08E-02	1,61E-03	2,35E-05	kg NMVOC/kg VS excreted
3B4e	Horses	1,08E-02	1,61E-03	2,35E-05	kg NMVOC/kg VS excreted
3B4f	Mules and Asses	1,08E-02	1,61E-03	2,35E-05	kg NMVOC/kg VS excreted
3B4gi	Laying hens	5,68E-03			kg NMVOC/kg VS excreted
3B4gii		9,15E-03			kg NMVOC/kg VS excreted
3B4giii	Turkeys		5,68E-03		kg NMVOC/kg VS excreted
3B4giv	Other poultry (ducks, geese)	5,68E-03			kg NMVOC/kg VS excreted
3B4h	Other animals (fur animals	5,68E-03			kg NMVOC/kg VS excreted
3B4h	Other animals (rabbits)	1,61E-03			kg NMVOC/kg VS excreted
3B4h	Other animals (reindeer)	1,61E-03	2,35E-05		kg NMVOC/kg VS excreted

Table 5.15 Default NMVOC Tier 2 emission factors for livestock (EMEP/EAA Guidebook 2019)

To accommodate the emission factors to the categorization of livestock in the Finnish Normative Manure system, the following applications are made:

- Heifers: emission factor of dairy cattle applied
- Bulls: emission factor of dairy cattle applied
- · Calves: emission factor of dairy cattle applied
- Weaned pig (20-50kg): emission factor of swine (fattening pigs)

Table 5.16 Gross energy intake	(MJ/day) in five year intervals	and the inventory year 2018
--------------------------------	---------------------------------	-----------------------------

Livestock	1980	1985	1990	1995	2000	2005	2010	2015	2018
Dairy cows	248.77	256.81	262.80	276.24	298.62	320.84	339.05	352.52	.361.08
Suckler cows	234.99	234.63	235.03	232.37	229.32	227.07	230.63	231.23	218.51.
Bulls (age over 1 year)	123.38	127.03	129.66	135.49	141.14	157.83	167.91	168.26	171.72.
Heifers	98.47	100.95	102.62	106.54	112.44	121.55	129.01	128.87	127.15.
Calves (under 1 year)	67.57	69.35	70.70	73.46	76.99	82.90	88.76	89.57	90.27.
Non-dairy GE	86.44	89.53	91.51	97.04	103.23	113.50	125.66	126.10	125.81.

Animal category	1980	1985	1990	1995	2000	2005	2010	2015	2018
Dairy cows	4.20	4.34	4.44	4.67	5.02	5.39	5.71	5.96	6.13
Non-dairy cattle	1.45	1.51	1.55	1.65	1.76	1.94	2.17	2.19	2.21
Suckler cows	5.25	5.18	5.17	4.92	4.68	4.47	4.38	4.39	4.15
Bulls (age over 1 year)	2.03	2.10	2.15	2.28	2.40	2.71	2.90	2.91	2.97
Heifers	1.67	1.72	1.76	1.83	1.94	2.13	2.29	2.29	2.26
Calves (under 1 year)	1.10	1.13	1.15	1.20	1.25	1.35	1.45	1.46	1.48
Swine	0.22	0.22	0.22	0.21	0.22	0.22	0.22	0.21	0.21
Sow	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
Piglets	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Fattening pigs	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Boars	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
Weaned pigs	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Sheep	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
Goats	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Horses	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13
Poultry	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Laying hens	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Chicken	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Cockerels	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Broiler hens	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Broilers	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Turkeys	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Other poultry (ducks)	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Other animals									
Reindeer	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
Fur animals	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Mink and fitch	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Fox and racoon	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14

Table 5.17 Volatile solids (VS) excreted in five year intervals and the inventory year 2018 (kg/head/day)

Emissions are calculated separately for silage store and feeding, housing, manure storage and field application of manure. The emissions are calculated for every animal category with annually calculated parameters (where available). In each activity, emissions are calculated for the count of one animal. The animal and year specific emissions are then multiplied by the average annual population. The corresponding equation is presented below.

$$E_{NMVOC\,i,j} = AAP_{i,j} \\ * \left(E_{silage_{store}} + E_{silage_{feed}} + E_{house} + E_{manure_{storage}} + E_{manure_{application}} \\ + E_{grazing} \right)_{i,j}$$

Where,

i

İ

= Livestock category = Inventory year = Annual average population within the animal category in the given year $AAP_{i,j}$ = Emissions from silage store $E_{silage_{store}}$ = Emissions from silage feeding $E_{silage_{feed}}$ Ehouse = Emissions from housing = Emissions from manure in barns and outside stores Emanurestorage $E_{manure_{application}}$ = Emissions from field application of manure (reported under 3Da2a) = Emissions from grazing (reported under 3Da3) Egrazing

Emissions from housing are estimated based on the time that the livestock spends in buildings, which is estimated annually. The estimates are retrieved from the Finnish Normative Manure System. The emission values are calculated with equations presented below.

Cattle:

 $E_{house} = MJ_i * X_{house_i} * EF_{house_i}$

Other livestock:

 $E_{house} = VS_i * X_{house_i} * EF_{house_i}$

Where,

 $\begin{array}{ll} i & = \text{Livestock category} \\ MJ_i & = \text{Gross feed intake as (MJ/a)} \\ VS_i & = \text{Volatile solids excreted (kg/a)} \\ X_{house_i} & = \text{Annual proportion of time the livestock spends inside buildings (%)} \\ EF_{house_i} & = \text{Emission factor for emissions from housing} \end{array}$

Emissions from silage store are estimated based on the time that the livestock spends in buildings (see Table 5.14b for the applied rates) and by estimating the fraction of silage feeding in the given livestock category. In order to apply the formula, it is to be assumed that silage feeding always occurs inside livestock buildings.

Cattle:

$$E_{silage_{store}} = MJ_i * X_{house_i} * \left(EF_{silage_{feed}} * Frac_{silage} \right)_i$$

Other livestock:

 $E_{silage_{store}} = VS_i * X_{house_i} * \left(EF_{silage_{feed}} * Frac_{silage}\right)_i$ Where, i = Animal category $EF_{silage_{feed}} = \text{Emission factor for silage feed}$ $Erac_{ii} = \text{Proportion of silage as feed (%)}$

 $Frac_{silage} = Proportion of silage as feed (%)$

Animal category	Fracsilage	Animal category	Fracsilage
Dairy cow	0.56	Chicken	0
Suckler cow	1	Turkey	0
Heifer >1 yr	0.7	Other poultry	0
Bull >1 yr	0.61	Horse	0.375
Calf <1 yr	0	Pony	0.375
Sow (with piglets)	0	Sheep	0.68
Boar (50- kg)	0	Goat	0.67
Fattening pig (50- kg)	0	Fox and racoon	0
Weaned pig (20-50 kg)	0	Mink and fitch	0
Laying hen breeder (female)	0	Reindeer	0
Cockerel (laying hen breeder, male)	0	Broiler breeder hen	0
Broiler	0	Broiler breeder. male	0

Table 5.19 Fraction of feed as silage for all animal categories

Emissions from silage store are estimated as the share of stored silage in relation to silage in the feeding table by introducing an estimate of the fraction of the stored silage to equations 4 and 5.

Cattle:

$$E_{silage_{store}} = MJ_i * X_{house_i} * \left(EF_{silage_{feed}} * Frac_{silage} * Frac_{silage_{store}} \right)_{i}$$

Other livestock:

$$E_{silage_{store}} = VS_i * X_{house_i} * \left(EF_{silage_{feed}} * Frac_{silage} * Frac_{silage_{store}} \right)_i$$

Where,

i = Animal category $Frac_{silage_{store}}$ = The relative share of stored silage in relation to silage in feeding table (%)

The guidebook default for $Frac_{silage_{store}}$ of 0.25 is used for all species and all years. Emission factors of silage feeding, however, are not cross-applied between the species except for categories with close resemblance to each other. The model suggests emissions from silage store to occur on all cattle, horses, sheep and goats.

Manure storage

The proportion of emissions from storage is assumed to possess the same ratio as with ammonia. The equation only factorizes NMVOC emissions from housing with the storage/building-ratio of ammonia emissions. Ammonia emissions are calculated in the Finnish Normative Manure System.

$$\boldsymbol{E}_{manure_{storage}} = \boldsymbol{E}_{NMVOC_{house}} * \left(\frac{\boldsymbol{E}_{NH3_{storage}}}{\boldsymbol{E}_{NH3_{building}}} \right)_{i}$$

Where,

i = Livestock category $E_{NMVOChouse}$ = NMVOC emissions from housing $E_{NH3storage}$ = Ammonia emissions from storage $E_{NH3building}$ = Ammonia emissions from housing

Data on manure management systems

The distribution of manure management systems has been estimated by using different data sources. Information on manure management is collected by Luke but not at the detailed level needed for emissions inventory purposes. Use of manure management systems is estimated based on data from the Information Centre of the Ministry of Agriculture and Forestry, the results of a questionnaire sent to Regional Employment and Economic Development Centres and to Regional Environment Centres, and through expert estimates (Sipilä, I. and Kapuinen, P. MTT) as described in Grönroos et al., (2009). Due to the low response rate on the questionnaire (only 8 questionnaires were received back), the distribution of different manure management systems is quite uncertain. A

new questionnaire (Grönroos J & Luostarinen S, Suomen lantojen käsittely (*Manure management in Finland*, unpublished.) has been made in 2013 to 11 120 farms, stables or fur farms, with a response rate of about 23 % answered. Based on this study, activity data of shares of manure management systems for years 1990-2005 stayed the same but from 2006 onwards the values were updated. In addition, dairy pasture parameters were updated from 2006 onwards series by updating the year 2012 management system data and interpolating the years 2006-2011. The values for 2013 and 2015 are based on the estimated trend between 2012 and 2020 where a continued increase for the share of slurry is assumed. Information about changes made to the data are presented in Grönroos 2014 (in Finnish, https://helda.helsinki.fi/handle/10138/152766).

The share of manure in dry lots (8.3% of extracted manure) is also based on a questionnaire made in 2013.

Year	Dairy cow	Suckler cow	Bull >1 yr	Calf <1 yr	Heifer >1 yr	Boar (50- kg)	Fattening pig (50- kg)	Sow (with piglets)	Veaned pig (20-50 kg)
1980	720	8	109	676	233	6	447	182	320
1981	701	9	114	690	253	6	465	190	333
1982	689	8	125	652	244	6	467	191	335
1983	663	9	120	640	250	6	457	186	327
1984	660	8	126	631	234	6	430	176	308
1985	628	9	125	631	215	5	404	165	289
1986	607	9	131	602	218	6	413	169	296
1987	589	9	125	558	217	6	420	172	301
1988	551	10	130	538	215	6	409	167	293
1989	507	9	134	490	206	5	405	165	290
1990	490	14	149	488	219	6	476	179	283
1991	446	21	144	486	214	6	464	174	276
1992	428	28	143	463	211	6	448	168	266
1993	426	33	139	437	217	5	439	165	261
1994	417	33	144	425	215	6	448	168	266
1995	399	29	109	422	189	7	491	161	277
1996	392	31	115	407	201	7	484	180	279
1997	391	32	121	402	197	7	512	185	332
1998	383	31	115	398	190	8	458	187	323
1999	372	30	118	379	188	6	469	180	269
2000	364	28	115	365	185	6	441	184	262
2001	355	27	111	362	182	5	426	164	264
2002	348	28	115	354	180	5	441	172	268
2003	334	28	115	344	179	5	483	178	269
2004	324	31	110	330	173	5	480	175	264
2005	319	35	108	329	169	4	500	177	280
2006	309	39	112	318	171	4	498	171	296
2007	296	43	110	311	166	4	525	177	329
2008	289	48	109	305	165	4	533	167	312
2009	290	52	110	304	163	4	535	156	303
2010	289	55	114	303	164	3	526	146	304

Table 5.20a Animal numbers in Finland for cattle and swine (x 1 000 heads).

2011	286	57	111	299	162	3	531	134	288
2012	284	58	109	303	160	2	534	130	277
2013	283	57	110	300	162	2	534	122	273
2014	285	58	110	303	158	2	507	118	269
2015	285	59	109	307	155	2	501	116	275
2016	282	59	108	310	150	2	489	108	256
2017	275	60	111	297	150	1	447	99	249
2018	271	60	106	299	146	1	425	95	246

Table 5.20b Animal numbers in Finland for poultry, sheep and goat (x 1 000 heads).

	Broiler breeder			Cockerel (laying hen breeder,	Laying hen breeder	Other			
Year	hen	Broiler	Chicken	male)	(female)	poultry	Turkey	Goat	Sheep
1980		1867	2435	50	6041	20	60	6	106
1981		1918	1707	50	5200	20	60	6	103
1982		1970	1622	50	5292	20	60	6	104
1983		2197	2169	50	5440	20	60	6	104
1984		2423	1932	50	6025	20	60	6	110
1985		2654	1547	50	5922	20	60	6	112
1986		2884	1505	50	5532	20	60	6	116
1987		3319	1449	50	5342	20	60	6	126
1988		3754	1441	50	5238	20	60	6	119
1989		3374	1415	50	4923	20	60	6	108
1990	62	2993	1633	50	4845	21	60	6	103
1991	97	3250	1304	45	4138	32	64	5	107
1992	133	3506	1598	40	3969	43	68	5	108
1993	168	3763	1522	35	4025	54	72	5	120
1994	203	4020	1422	30	4090	65	76	6	121
1995	240	4276	1482	25	4179	75	80	6	159
1996	279	4052	1246	25	4184	54	96	7	150
1997	299	4911	1288	32	4152	33	112	8	150
1998	347	5507	1185	30	3802	35	145	8	128
1999	382	5998	1025	17	3361	39	210	8	107
2000	364	7918	914	18	3110	32	215	9	100
2001	394	5412	1043	12	3202	35	455	7	96
2002	402	5766	772	9	3213	41	531	7	96
2003	346	6050	931	10	3016	40	603	7	98
2004	287	5573	912	10	3069	18	535	7	109
2005	457	5472	954	12	3128	20	495	7	90
2006	405	5366	844	13	3103	15	493	7	117
2007	351	5074	764	13	3134	24	431	6	119
2008	339	5675	865	19	3190	19	415	6	122
2009	329	4918	859	15	2926	16	306	6	118
2010	433	4616	838	14	3394	12	280	5	126

2011	421	5421	745	22	3304	14	308	5	129
2012	471	6038	743	27	3173	14	295	5	130
2013	520	6861	858	22	3432	13	274	5	136
2014	544	7341	714	25	3645	15	292	4	138
2015	548	6840	662	26	3501	23	247	5	155
2016	523	8175	748	26	3662	17	260	5	157
2017	473	8047	509	22	3746	47	292	5	156
2018	424	8781	608	17	3985	26	299	5	155

Table 5.20c Animal numbers in Finland for other animals (x 1 000 heads).

					_
Year	Fox and racoon	Mink and fitch	Reindeer	Horse	Pony
1980	1751	4207	186	30	1
1981	1894	4200	178	31	2
1982	2532	4379	185	31	2
1983	2546	4448	204	32	2
1984	2289	4686	223	33	3
1985	3117	5036	221	34	3
1986	3380	3982	230	35	4
1987	3175	3368	229	31	4
1988	2917	3520	227	34	5
1989	1995	3162	256	36	5
1990	1478	1805	239	39	6
1991	1092	1505	260	42	6
1992	1272	1576	232	43	6
1993	1221	1659	215	43	6
1994	1645	1639	214	42	6
1995	1804	1945	208	44	6
1996	2344	1801	213	46	6
1997	2493	1828	203	48	7
1998	2322	1646	196	49	7
1999	1972	1733	195	50	7
2000	1863	1498	203	51	7
2001	2044	1399	186	52	7
2002	2003	1408	200	52	7
2003	2205	1379	197	53	7
2004	2175	1355	201	54	7
2005	2320	1466	207	56	8
2006	2025	1422	198	58	8
2007	1713	1768	193	60	9
2008	1440	1259	195	61	9
2009	2116	1327	193	63	9
2010	1898	1576	194	65	10
2011	1784	1115	196	65	10
2012	1974	1402	192	65	10
2013	1816	1218	192	65	10

2014	2028	1170	187	64	10
2015	2084	1027	191	64	10
2016	2202	1027	191	64	10
2017	2028	934	193	64	10
2018	2028	934	185	64	10

Uncertainty and time series' consistency

The time series is consistent. The results of the uncertainty analysis are provided in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checks related to the assessment of magnitude and trends have been carried out. At present, no verification has been carried out for the specific source-sector emissions. Cross-checking of data and functions of the model are carried out as the same model is used both by SYKE for air pollutant emissions inventories and by Luke for greenhouse gas emissions inventories.

Source-specific recalculations including changes made in response to the review Process

2009

- The agriculture emissions calculation model was used for the first time in the ammonia emissions inventory in the submission in 2009.
- 2011
 - The allocation of boars was changed from NFR 4B13 to 4B8.
 - NH₃ and particle emissions were recalculated and reported in NFR format.
- 2013
 - The time series 1990-2013 was recalculated and reported in NFR14 format.

2014

- Revision of ammonia emission factors and disaggregation of activity data in cooperation with the Natural Resources Institute Finland.
- 2015
 - Particulate matter emission factors for manure management revised according to Guidebook 2013 for the whole time series. Also data on grazing times, manure handling systems and indoor/outdoor times were updated according to domestic studies.

2017

- Particle emissions from heifers were inserted in the time series as they were missing due to an error from inventory submissions in 2010-2014.

2016-2017

- The Finnish Agriculture Emissions Calculation Model was completed with NMVOC emissions according to the method presented in the 2016 Guidebook. (Munther et al., 2017)
- The calculation of NH₃ and NOx emissions was revised (Grönroos et al, 2017)
- 2019
 - Particulate matter emissions were included for goats, sheep, fur animals and reindeer based on Guidebook 2016
 - The implied emission factors for NH₃ have changed from the previous reporting because of the correction of the error in emission calculation of deep litter manure system. The

emissions (NH₃, NO, N₂O) from spreading of 80% of the manure managed as deep litter were missing because of an error in the calculation sheets of all other animals than broilers.

- 2020
 - New Tier 2 ammonia emission factors of the EMEP/EEA air pollutant emission inventory guidebook 2019 were introduced for manure management, manure spreading and grazing, replacing the Tier 2 emission factors of EMEP/EEA 2016 guidebook.
 - Nitrogen excretion factors time series (1990-2018) of suckler cows and dairy cows were
 updated due to the changes in excretion calculation methods. Nitrogen excretion of suckler
 cows was recalculated to better reflect the change in their diet that has taken place along
 the time series. A double counting error in dairy cow N excretion was corrected: the
 increased energy demand during the first pregnancy was removed from dairy cows, since it
 is already included in the heifer stage.
 - Nitrogen excretion factor of horses was corrected for 2017.
 - Numbers of fur animals were updated for the years 2016 and 2017. A technical error in the calculation of particle emissions for manure management for the early years of the time series corrected.
 - A technical error in the calculation of particle emissions for manure management for the early years of the time series corrected.

Source-specific planned improvements

None.

5.4 Agricultural Soils (NFR 3D)

Figure 5.14 K. Inha (1899)

Source category description

Changes in chapter March 2020 KS, JMP, JG, JM

The category	covers emission	sources	presented in	Table 5.21

NFR		Emissions
3Da1	Inorganic N-fertilizers	NOx, , NH ₃
3Da2a	Animal manure applied to soils	NOx, NMVOC, NH ₃ (calculated in 3B)
3Da2b	Sewage sludge applied to soils	NH ₃ , NOx
3Da2c	Other organic fertilisers applied to soils	NA
3Da3	Urine and dung deposited by grazing animals	NOx, NMVOC, NH3(calculated in 3B)
3Da4	Crop residues applied to soils	NA
3Db	Indirect emissions from managed soils	
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	TSP, PM10, PM2.5
3Dd	Off-farm storage, handling and transport of bulk	NA
3De	Cultivated crops	NMVOC
3Df	Use of pesticides	НСВ
3F	Field burning of agricultural residues	NOx, NMVOC, Sox, CO, NH ₃ , particles heavy metals, PCDD/F, PAH-4
31	Agriculture other	NO

Table 5.21 Emission sources and emissions reported under NFR 3D

5.4.1 Synthetic N-fertilizers (NFR 3D1a)

Changes in chapter	
March 2020	KS & JM JMP JG

Source category description

Nitrogen oxides and ammonia emissions from the use of synthetic nitrogen fertilizers are included under this category.

Emission trend

The emission trend fluctuates according to the use of fertilizers (Figure 5.15).

Figure 5.15 NOx and NH₃ emissions 1980-2018 from the use of synthetic N-fertilizers

Methodological issues

Ammonia emissions

Calculation of NH_3 emissions from application of nitrogen fertilizers is carried out in the agriculture emissions calculation model (Grönroos et al.. 2017). The calculation is consistent with the EMEP/EEA Guidebook 2019.

Ammonia emissions from the use of mineral N-fertilisers were calculated separately for different fertiliser types using the emission factors presented in the EMEP/EEA Emission Inventory Guidebook (EMEP/EEA 2019b, Table 3-2). Due to the low soil pH and low average annual temperature in Finland, the 'normal pH' emission factors for cool climate were applied. The total amount of nitrogen sold annually in Finland (Table 5.22) was divided over fertiliser types using the information obtained from Yara Finland Ltd (Toimela 2016) and Natural Resources Institute Finland (Mattila 2016; Tables

5.23 and 5.24). EMEP/EEA emission factors presented in Table 5.23 are based on the emissions from surface applied fertilisers. In Finland, however, placement fertilisation is typically used for cereals. According to the EMEP/EEA (2019b, A1.2.2), fertiliser-N that is immediately incorporated into the soil will not be a source of ammonia as the NH_4^+ ions are absorbed onto soil colloids or nitrified. Thus, N-fertilisers used in Finland were divided between fertilisers spread using placement fertilisation and fertilisers applied on soil surface (typically grassland).

Year	Use of N-fertlizers (t)	Year	Use of N-fertlizers (t)	Year	Use of N-fertlizers (t)
1980	189 098	1993	168 199	2006	148 161
1981	188 457	1994	169 138	2007	148 784
1982	177 234	1995	195 460	2008	162 905
1983	206 665	1996	179 529	2009	136 009
1984	202 814	1997	169 345	2010	156 523
1985	196 242	1998	169 928	2011	146 189
1986	194 304	1999	162 700	2012	138 900
1987	204 140	2000	167 276	2013	138 136
1988	205 674	2001	165 621	2014	147 373
1989	205 862	2002	160 403	2015	143 479
1990	228 470	2003	159 288	2016	138 128
1991	202 462	2004	154 708	2017	138 948
1992	163 229	2005	149 562	2018	138 385

Table 5.22. Use of mineral N-fertilizers as N (tonnes) 1980-2018

Table 5.23. Distribution of mineral N-fertilisers used in Finland by fertiliser type (%) in 2018, distribution of each fertiliser type by application method (placement fertilisation or spread on soil surface, %), and ammonia emission factors (EFs for normal pH, cool climate) for different fertiliser types applied.

Spread as:	% of applied fertiliser-N	Spread using placement fertilisation (%)	Spread on soil surface (%)	EF for fertiliser-N spread on soil surface (kg NH₃ kg ⁻¹ N)
Ammonium nitrate	0.0 %	65	35	0.015
Anhydrous ammonia	0.0 %	65	35	0.019
Ammonium phosphates	0.0 %	65	35	0.05
Ammonium sulphate	0.4 %	65	35	0.09
Calcium ammonium nitrate	19.9 %	65	35	0.008
Calcium nitrate	0.0 %	65	35	0.01
Ammonium solutions (AN)	0.1 %	65	35	0.015
Ammonium solutions (Urea AN)	0.0 %	65	35	0.098
Urea ammonium sulphate	0.0 %	65	35	0.098
Urea	0.7 %	65	35	0.155
Other NK and NPK	79.0 %	65	35	0.05

Table 5.24 Distribution of mineral N-fertilisers used in Finland by fertiliser type. The share of each

fertiliser depends on the year (Sources: Kemira / Yara Finland and Finnish Food Safety Authority Evira / Finnish Food Authority) (Finland's NIR 15.1.2020)

	% of applied	I N						
Fertiliser type	1990	1995	2000	2005	2010	2015	2016	2017
Ammonium sulphate	0.004	0	0	0	0.2	0	0	0.7
Ammonium nitrate	0	0	0	0	0	0	0	0
Calcium ammonium nitrate	10.8	9.3	15.3	15.2	23.8	30.9	30.5	27.1
Anhydrous ammonia	0	0	0	0	0	0	0	0
Urea	1.3	0.1	0.2	0.4	0.5	0.8	1.2	0.7
Nitrogen solutions	0.003	0	0	0.02	0.02	0	0	0
Ammonium phosphates	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.4
Other NK and NPK	87.5	90.3	84.3	84.2	75.3	67.6	68.1	70.7
Nitrate only	0.3	0.09	0.08	0.06	0.06	0.07	0.10	0.29

Nitrogen dioxide emissions

Nitric oxide emissions expressed as nitrogen dioxide (NO₂) were included to the inventory for first time in the 2017 submission for the whole time series (1990-2016). The calculation is carried out in the Agriculture Emissions Calculation Model (Grönroos et al., 2017). The model is described in more detail above (ammonia emissions), nitric oxide emissions are calculated in the model as part of other nitrogen emissions. For nitrogen dioxide, the emission factor of 0.04 kg NO₂ kg⁻¹ fertiliser-N applied (EMEP/EEA 2019b) was used.

The emission factor for NO₂ emissions from NFR 3Da1 was updated to the 2018 submission. In the previous submission (2017), the emission factor of 0.04 was assumed to mean NO emissions, and the result was further multiplied by 46/30 to convert NO emissions to NO₂ emissions, resulting too high emission values for NO₂.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied since the 2012 submission. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2018

- The emission factor for NOx emissions from NFR 3Da1 was updated to the 2018 submission

2020

- Distribution of mineral N-fertilisers used in Finland by fertiliser type for the years 2015-2017 was corrected to the 2020 submission.

Source-specific planned improvements

None.

5.4.2 Animal manure applied to soils (NFR 3Da2a)

Changes in chapterMarch 2020KS JM

Source category description

Nitrogen oxides, NMVOC and ammonia emissions due to application of manure to soils are included under this category.

Emission trend

The emissions fluctuate according to the amount of manure applied annually (Figure 5.15)

Figure 5.15 NOx, NMVOC and NH₃ emissions 1980-2018 from manure application to soils

Methodological issues

Ammonia emissions

For the detailed description see Grönroos et al 2017 (in the CDR folder)

Nitrogen dioxide emissions

The calculation is carried out in the Agriculture Emissions Calculation Model (Grönroos et al., 2017). For nitrogen dioxide, the emission factor of 0.04 kg NO₂ kg⁻¹ manure-N applied (EMEP/EEA 2019b) was used.

The emission factor for NO₂ emissions from NFR 3Da1 was updated to the 2018 submission. In the previous submission (2017), the emission factor of 0.04 was assumed to mean NO emissions, and the result was further multiplied by 46/30 to convert NO emissions to NO₂ emissions, resulting too high emission values for NO₂.

NMVOC

Calculation of NMVOC emissions from field application of manure follows the same principle than emissions from manure storage reported under NFR 3 B. The method is based on EMEP/EEA Emission Inventory Guidebook 2019.

$$E_{manure_{application}} = E_{NMVOC_{house}} * \left(\frac{E_{NH3_{application}}}{E_{NH3_{building}}}\right)_{i}$$

Where,

i	= Animal category
E _{NMVOC house}	= NMVOC emissions from housing
$E_{NH3 application}$	= Ammonia emissions from application
E _{NH3 building}	= Ammonia emissions from housing

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied since the 2012 submission. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2017

- Nitric oxide emissions expressed as nitrogen dioxide (NO₂) were included to the inventory for first time for the whole time series

2018

- The emission factor for NOx emissions from NFR 3Da2a was updated to the 2018 submission

Source-specific planned improvements

None.

5.4.3 Sewage sludge applied to soils (NFR 3Da2b)

Changes in chapterMarch 2020KS, JM, JG

Source category description

The category includes nitrogen oxides and ammonia emissions to soils from the application of sewage sludge.

Emission trend

The emission trend is impacted by the amount of sludge which started to decrease since 1998 due to Finland's joining the EU earlier in 1995. As late as in the beginning of the 1990's sludge storages were too small and sludge spreading was common even in the winter time. After Finland joined the EU, the amounts of sludge spread have decreased significantly. (Figure 5.16)

Figure 5.16. Sewage sludge applied to soils 1980-2018

Methodology

Ammonia

Ammonia emissions are calculated using emissions factor from the Guidebook 2019. N input from sewage sludge used in agriculture (Finland's NIR 2020) is used as activity data. It is assumed that 15 % of total nitrogen is in the form of ammonium nitrogen and that 15 % of that ammonium nitrogen evaporates during the spreading on the fields.

NOx emissions

NOx emissions from 3Da2b Sewage Sludge Applied to Soils were included in the 2018 submission using emission factors from the 2019 EMEP/EEA Guidebook and amounts of N inputs from sewage sludge to soils from 1990-2018 (Table 5.26). It is assumed that 15 % of total nitrogen is in the form of ammonium nitrogen and that 15 % of that ammonium nitrogen evaporates during the spreading on the fields.

Annual nitrogen input from sewage sludge is presented in Table 4.25 (Finland's NIR 2020)

Year	N input from sewage sludge (Mg N/year)	Year	N input from sewage sludge (Mg N/year)	Year	N input from sewage sludge (Mg N/year)
1990	2 202	2000	513	2010	338
1991	1 749	2001	725	2011	148
1992	1 532	2002	616	2012	245
1993	1 404	2003	754	2013	223
1994	2 063	2004	441	2014	81
1995	1 316	2005	143	2015	81*
1996	1 548	2006	156	2016	81*
1997	1 696	2007	147	2017	81*
1998	575	2008	257	2018	81*
1999	644	2009	266		

Table 5.25 N input from sewage sludge 1990-2018 (Mg N/year)

- no data available for 2015-2018, therefore 2014 value has been used instead

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied since the 2012 submission. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2013

- Ammonia emissions from sewage sludge application were included in the inventory

2018

- NOx emissions were included in the inventory due to the recommendation of the NECD 2017 review.

Source-specific planned improvements

2020

- N input from sewage sludge for whole timeseries will be updated.

5.4.4. Other organic fertilizers applied to soils (NFR 3Da2c)

Changes in chapterMarch 2020JG

Source category description

Emissions from the application of other organic fertilizers applied to soils is not occurring in Finland (Grönroos et al. 2017).

Source-specific recalculations including changes made in response to the review process

2018

- The notation key was changed to NO

5.4.5 Urine and dung deposited by grazing animals (NFR 3Da3)

1	Changes in chapter	
	February 2020	JG, JM, KS

Source category description

This source category includes emissions originating from urine and dung deposited by grazing livestock to fields during grazing.

Emission trend

Emission trend is affected by changes in animal numbers, N-excretion rates, percentage of grazing animals and length of the grazing period. Since the beginning of 1980's, numbers and grazing of other cattle than suckler cows have decreased, resulting decrease in total emissions. However, increase in numbers of horses, ponies and suckler cows has smoothened the decreasing trend in emissions.

Figure 5.17 NOx, NMVOC and NH_3 emissions from 3Da3 in 1980-2018

Methodology

Ammonia emissions

For the detailed description, see Grönroos et al 2017 (in the CDR folder)

Nitrogen dioxide emissions

The calculation is carried out in the Agriculture Emissions Calculation Model (Grönroos et al., 2017). For nitrogen dioxide, the emission factor of 0.04 kg NO₂ kg⁻¹ manure N excreted (EMEP/EEA 2016b) was used.

The emission factor for NO₂ emissions from NFR 3Da1 was updated to the 2018 submission. In the previous submission (2017), the emission factor of 0.04 was assumed to mean NO emissions, and the result was further multiplied by 46/30 to convert NO emissions to NO₂ emissions, resulting too high emission values for NO₂.

NMVOC

Emissions from outdoors grazing of animals are calculated by gross feed intake (cattle) and volatile solids (other livestock) with an estimate of the time spent outdoors. The time animals spend indoors is estimated annually. The estimates are retrieved from the Finnish Normative Manure System. The emission factors in Table 5.26 are from Guidebook 2019.

Cattle:
$$E_{graz} = MJ_i * (1 - X_{house_i}) * EF_{graz_i}$$

Other livestock:

$$E_{graz} = VS_i * (1 - X_{house_i}) * EF_{graz_i}$$

where,

i

 MJ_i

 VS_i

= Animal category

- = Gross feed intake as (MJ/a)
- = Volatile solids excreted (kg/a)
- EF_{graz_i} = Emission factor for grazing presented in Table 5.27.

 X_{house_i} = annual proportion of time the animal spends inside a livestock building (%)

NFR	Livestock	EFgrazing	Unit
3B1a	Dairy cattle	6,90E-06	kg NMVOC kg/MJ feed intake
3B1b	Non-dairy cattle	6,90E-06	kg NMVOC kg/MJ feed intake
3B2	Sheep	2,35E-05	kg NMVOC/kg VS excreted
3B4a	Buffalo	2,35E-05	kg NMVOC/kg VS excreted
3B4d	Goats	2,35E-05	kg NMVOC/kg VS excreted
3B4e	Horses	2,35E-05	kg NMVOC/kg VS excreted
3B4f	Mules and Asses	2,35E-05	kg NMVOC/kg VS excreted
3B4h	Other animals (reindeer)	2,35E-05	kg NMVOC/kg VS excreted

 Table 5.26 NMVOC emission factors for grazing animals (Source Guidebook 2019)

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied since the 2012 submission. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2017

- Nitric oxide emissions expressed as nitrogen dioxide (NO₂) were included to the inventory for first time in the 2017 submission for the whole time series (1990-2016).

2018

- NFR 3Da3: The emission factor for NOx was changed due to the change in the 2016 Guidebook. The emissions decreased by 40%.

Source-specific planned improvements

None.

5.4.6 Crop residues applied to soils (NFR 3Da4)

Changes in chapter	
March 2020	JG

Emissions from crop residues applied to soils are reported as NA, because no methodology is presented in Guidebook 2019.

Indirect emissions from managed soils (NFR 3Db)

Changes in chapter					
January 2020	JG				

Indirect emissions from managed soils are reported as NA, because no methodology is presented in Guidebook 2019.

5.4.7 Farm-level agricultural operations including storage, handling and transport of agricultural products (NFR 3Dc)

Changes in chapterFebruary 2020JG, KS

Source category description

Particle emissions from cultivation, harvesting, cleaning and drying of crops are included under this category.

Emission trend

The activity data figures fluctuate annually mostly due to market demands. The count of producers has been steadily declining since the 1990's and simultaneously the land area per producer has been increasing. Farming subsidy policies, which in the early 90's were reshaped upon joining the European Union, is also a notable factor influencing the composition of Finnish agriculture in general. However, these factors do not present notable trends in emissions throughout the time series. A minor decline can be observed in total TSP emissions, despite the total land area for cultivated crops remaining constant (Figure 5.18) This is due to a slight shift from most common crops towards more specialized crops for which there is no emission factor for harvesting, cleaning or drying.

Figure 5.18 Total cultivated area and small particle emissions

Methodological issues

Activity data

Information on the use of arable land and harvested areas are provided by Natural Institute Resources Finland. For harvesting, data is available only from the year 2000 onwards. The figures used in calculation for 1990's are trend-projected values. Reliable statistics of cleaning and drying of crops does not exist and harvested areas are applied instead. This leads to a possible overestimate on emission values for cleaning and drying, as it can be safely assumed that not all of the harvested crops go through these processes. The activity data used in calculation is presented in Tables 5.27a and b (Natural Resources Institute Finland)

Table 5.27a Use of arable land area as thousands of hectares (Natural Resources Institute Finland)

Year	Wheat	Rye	Barley	Oats	Mixed grain	Other grains	Peas	Potatoes	Sugar beet	Turnip rape and rape	Нау	Silage	Pasture	Other grassland	Other crops	Fallow
1990	191	83	503	461	14	0	3	37	31	66	291	224	129	39	19	183
1991	118	10	541	343	12	0	11	36	32	61	232	234	120	37	21	494
1992	88	11	473	335	13	0	16	35	32	73	243	247	130	42	21	529
1993	99	23	459	332	13	0	13	36	33	69	255	261	125	46	20	494
1994	89	9	506	334	10	0	6	37	34	67	258	268	123	36	21	505
1995	101	21	516	329	11	1	5	36	35	85	287	301	127	40	25	223

1996	113	35	543	374	14	1	6	35	35	62	244	302	118	38	24	179
1997	125	23	583	369	16	2	6	33	35	61	220	314	114	39	25	162
1998	137	36	578	387	16	3	5	33	33	65	198	339	112	34	26	167
1999	118	12	581	404	18	1	5	32	35	63	175	350	114	33	25	211
2000	150	45	559	400	17	3	5	32	32	53	160	376	118	33	24	181
2001	145	29	547	423	16	1	5	30	31	73	158	381	94	32	25	202
2002	175	31	523	451	16	1	5	30	31	68	118	397	95	28	27	211
2003	192	31	531	426	16	1	4	29	29	75	101	399	102	27	30	220
2004	236	31	565	372	17	1	4	29	31	83	93	415	87	26	35	196
2005	215	14	595	346	16	1	4	29	31	77	107	398	92	24	45	241
2006	192	22	564	354	19	1	4	28	24	108	126	386	88	26	64	253
2007	204	32	550	362	20	1	4	28	16	90	103	438	90	23	64	232
2008	220	24	613	373	21	1	3	27	14	65	103	452	81	21	55	189
2009	218	16	601	343	23	2	4	26	15	81	86	450	79	25	57	230
2010	214	25	448	296	26	3	6	25	15	158	106	452	77	24	71	307
2011	257	27	465	324	28	3	5	25	14	92	103	472	75	17	67	276
2012	242	21	503	353	32	2	5	23	12	69	95	471	73	20	59	267
2013	231	12	533	367	33	2	4	22	12	53	93	466	72	19	50	254
2014	272	24	532	326	37	2	6	22	14	44	94	472	71	16	53	247
2015	249	32	513	307	36	3	12	22	13	57	86	492	58	16	75	271
2016	223	27	486	332	40	3	12	22	12	62	94	512	58	24	79	261
2017	219	32	437	337	43	3	11	22	12	65	87	552	57	21	90	254
2018	190	17	463	324	42	4	10	22	10	58	110	572	56	25	96	246

Table 5.27b Harvested area as thousands of hectares (Natural Resources Institute Finland)

_

Year	Wheat	Rye	Barley	Oats	Mixed grain	Peas	Potatoes	Sugar beet	Turnip rape and rape	Нау	Silage
1990	119	42	589	480	14	5	35	44	55	162	331
1991	124	40	588	474	14	4	35	44	56	160	333
1992	128	39	581	467	15	5	34	43	59	157	335
1993	133	39	578	461	15	4	34	42	61	155	339
1994	139	38	587	458	15	4	34	41	56	150	344
1995	142	36	590	450	15	4	33	39	59	146	348
1996	148	35	588	441	15	4	33	38	66	143	354
1997	154	35	581	428	15	4	33	36	71	139	361
1998	157	33	573	420	14	4	32	35	75	136	368
1999	163	31	569	414	16	4	31	33	77	133	373
2000	149	45	559	400	17	5	32	32	53	158	372
2001	143	29	543	416	16	5	30	31	72	158	381

2002	174	30	522	451	16	5	30	31	66	118	397
2003	191	31	530	425	16	4	29	29	75	101	399
2004	225	27	532	326	16	3	27	30	68	91	412
2005	215	14	594	345	16	4	29	31	77	107	398
2006	192	22	564	353	19	4	28	24	107	125	384
2007	203	32	533	347	15	4	27	16	90	102	438
2008	216	24	586	355	13	3	26	14	64	102	451
2009	216	16	562	322	15	4	26	15	81	86	450
2010	211	25	417	278	19	6	25	15	158	106	452
2011	253	27	432	308	19	5	24	14	91	103	472
2012	227	21	451	314	21	4	21	12	57	95	471
2013	228	12	494	344	21	4	22	12	53	93	465
2014	267	24	497	305	24	6	22	14	43	94	472
2015	242	31	452	281	11	12	22	12	55	86	492
2016	215	26	436	305	14	10	22	12	60	94	511
2017	194	29	358	270	10	4	21	12	55	87	552
2018	178	16	405	289	15	9	21	10	53	110	570

* Figures in grey represents projected data.

Particles

The emission factors are from EMEP/EEA Emission Inventory Guidebook 2019. For TSP emissions same emission factor as for PM10 emissions is used. The emission factor of cultivation of "other arable" is applied to all cultivated species with available statistics. This leads to a minor increase in total particle emissions as opposed to the previous submissions. The wet climate emission factors of the Guidebook 2019 are applied to local crops as presented in Tables 5.28 a-c.

Creation		TSP	*	
Species	Cultivation	Harvesting	Cleaning	Drying
Wheat	0.250	2.7	0.190	0.560
Rye	0.250	.2.0	0.160	0.370
Barley	0.250	.2.3	0.160	0.430
Oats	0.250	.3.4	0.250	0.660
Mixed grain	0.250	NC	NC	NC
Other grains	0.250	NC	NC	NC
Peas	0.250	NC	NC	NC
Potatoes	0.250	NC	NC	NC
Sugar beet	0.250	NC	NC	NC
Turnip rape and rape	0.250	NC	NC	NC
Hay	0.250	0.250	0.000	0.000
Silage	0.250	NC	NC	NC
Pasture	0.250	NC	NC	NC

 Table 5.28a TSP emission factor for farm-level agricultural operations: cultivation, harvesting, cleaning and drying of crops (Applied to Finnish conditions from Guidebook 2019)

Other grassland	0.250	NC	NC	NC
Other crops	0.250	NC	NC	NC
Fallow	0.250	NC	NC	NC

^{*} PM10 EF's in use

Table 5.28b PM10 emission factor for farm-level agricultural operations: cultivation, harvesting, cleaning and drying of crops (Applied to Finnish conditions from Guidebook 2019)

Species		PM10)	
Species	Cultivation	Harvesting	Cleaning	Drying
Wheat	0.250	.2.7	0.190	0.560
Rye	0.250	.2.0	0.160	0.370
Barley	0.250	.2.3	0.160	0.430
Oats	0.250	.3.4	0.250	0.660
Mixed grain	0.250	NC	NC	NC
Other grains	0.250	NC	NC	NC
Peas	0.250	NC	NC	NC
Potatoes	0.250	NC	NC	NC
Sugar beet	0.250	NC	NC	NC
Turnip rape and rape	0.250	NC	NC	NC
Hay	0.250	0.250	0.000	0.000
Silage	0.250	NC	NC	NC
Pasture	0.250	NC	NC	NC
Other grassland	0.250	NC	NC	NC
Other crops	0.250	NC	NC	NC
Fallow	0.250	NC	NC	NC

Table 5.28c PM2.5 emission factor for farm-level agricultural operations: cultivation, harvesting, cleaning and drying of crops (Applied to Finnish conditions from Guidebook 2019)

Species		PM2.	5	
Species	Cultivation	Harvesting	Cleaning	Drying
Wheat	0.015	0.020	0.009	0.168
Rye	0.015	0.015	0.008	0.111
Barley	0.015	0.016	0.008	0.129
Oats	0.015	0.025	0.013	0.198
Mixed grain	0.015	NC	NC	NC
Other grains	0.015	NC	NC	NC
Peas	0.015	NC	NC	NC
Potatoes	0.015	NC	NC	NC
Sugar beet	0.015	NC	NC	NC
Turnip rape and rape	0.015	NC	NC	NC
Hay	0.015	0.010	0.000	0.000

Silage	0.015	NC	NC	NC
Pasture	0.015	NC	NC	NC
Other grassland	0.015	NC	NC	NC
Other crops	0.015	NC	NC	NC
Fallow	0.015	NC	NC	NC

$$E_{i} = \sum \left(\left(EF_{j,cultivation} * A_{j,cultivation} \right) + A_{j,harvesting} \left(EF_{j,harvesting} + EF_{j,cleaning} + EF_{j,drying} \right) \right)$$

Where,

,	
i	= Inventory year
j	= Crops species
EF	= Emission factor (cultivation, harvesting, cleaning or drying) as kg/ha
A	= Land area as hectares (cultivation or harvesting)

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied since the 2012 submission. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2018

- Particle emission factors (as well as activity data) were revised from the TNO emission factors used earlier to those presented in the EMEP/EEA Emission Inventory Guidebook 2016 due to the recommendation of the 2017 NECD review. The revision increased the emissions to be 10-fold compared to the earlier estimates.

2019

- Calculation of new species for which statistical data is available. Considered as "other arable" and the emissions were recalculated with Tier 2 methodology of EMEP/EEA Guidebook 2016.

2020

- Emission factors for harvesting updated according to the EMEP/EEA 2019 guidebook.

Source-specific planned improvements

None.

5.4.8 Off farm storage, handling and transport of bulk agricultural products (NFR 3Dd)

Changes in chapter	
February 2020	JG

Emissions from off-farm storage, handling and transport of bulk agricultural products are reported as NA, because no methodology is presented in Guidebook 2019.

5.4.9 Cultivated crops (NFR 3De)

Changes in chapter	
Feb 2020	JG, KS

Source category description

This chapter describes the calculation of NMVOC from cultivated crops, grasslands and fallows that serve agricultural purposes. Activity data is provided by Natural Resources Institute Finland (LUKE).

Emission trend

The activity data figures fluctuate annually mostly due to market demands and production rates of specific crops. NMVOC emissions follow this trend.

Figure 5.19 NMVOC emissions from cultivated crops

Methodological issues

The emissions of cultivated crops are calculated according to the guidance of EMEP/EAA Guidebook 2019. The model is constructed to calculate by Tier 1 and Tier 2 methods with a possibility to extend calculation into Tier 3.

NMVOC

NMVOC emissions from cultivated crops such as cereals, grasslands and silage are included in the inventory. Table 5.28 presents total cultivated land area for the years 1990-2018. Table 5.29 presents cultivated land areas by species included in the inventory. The total cultivated land area for 2018 was 2243 hectares.

Year	Total Cultivated Area (kha)	Year	Total Cultivated Area (kha)
1 990	2 271	2 005	2 235
1 991	2 302	2 006	2 259
1 992	2 287	2 007	2 255
1 993	2 278	2 008	2 257
1 994	2 302	2 009	2 257
1 995	2 141	2 010	2 253
1 996	2 122	2 011	2 249
1 997	2 125	2 012	2 248
1 998	2 166	2 013	2 223
1 999	2 177	2 014	2 230
2 000	2 187	2 015	2 241
2 001	2 192	2 016	2 243
2 002	2 204	2 017	2 242
2003	2 212	2018	2 243
2 004	2 219		

Table 5.28 Total cultivated land area per species (thousands of hectares)

Fable 5.29 Total cultivated land area	per species in 2018	(thousands of hectares)
---------------------------------------	---------------------	-------------------------

Species	Cultivated area	SNAP
Wheat	190	100102
Rye	17	100102
Barley	463	100102
Oats	324	100102
Mixed grain	42	100102
Other grains	4	100102
Peas	10	100102
Potatoes	22	100102
Sugar beet	10	100102
Turnip rape and rape	58	100102
Нау	110	100105
Silage	572	100105
Pasture	56	100105
Other grassland	25	100105

Other crops	96	100104
Fallow	246	100101
Total	2 243	

The methodology for the calculation is based on EMEP/EEA Guidebook 2019 Tier 2 method, which reproduces the calculation of Tier 1 emission factor of by substituting the estimation of NMVOC Tier1 emission factor in kg ha-1 a-1 with national data. The recalculation is done for each year independently taking into account the annual relative changes within crop distribution and mean dry matter.

Default emission factor for Tier 1 calculation is 0.86 kg of NMVOC per hectare. The Tier 2 emission factor is calculated annually with the equation presented below.

$$EF_{i} = \sum \left(\mathsf{E}_{j,\mathsf{NMVOC}} * 24 * 365 * Frac_{emit,j} \right) * m_{dm_{j}} * Frac_{i,j}$$

Where,

i	= Inventory year
j	= Crops species
E _{i,NMVOC}	= Hourly emission flux of NMVOC per species (kg/dm ³ /h)
Frac _{emit}	= Fraction of the year during which the species is emitting
m_{dm}	= Mean dry matter of crop (kg/ha/a)
$Frac_{i,j}$	= Fraction of species <i>j</i> in relation to the total of cultivated areas and fallows for the year <i>i</i>

The Guidebook presents default values for calculation of the EF (Table 5.30). These defaults are used whenever national data is not available and replaced if more detailed information is available.

Species (i)	Ej,NMVOC	Fracemit	mdm,	Fracij
Wheat	2.60E-8	0,3	4700	0.35
Rye	1.41E-7	0.3	2800	0.05
Rape	2.02E-7	0.3	2500	0.1
Grass (15 C)	1.03E-8	0.5	9000	0.25
Grass (25 C)	4.67E-8	0.5	9000	0.25

Table 5.30 Default values for emissio	n factor	calculation
---------------------------------------	----------	-------------

Mean dry matter is derived from national statistics of species-specific yields per hectare by estimating their share of dry matter. Yield mean dry matter content remains constant throughout all years. Statistical data for yield per hectare is available for 2000-2018. The values for the year 2018 are presented in Table 5.31

Species	Yield per hectare (kg/ha)	Yield mean dry matter content (kg/kg)	Mean dry matter mdm (kg/ha)
Wheat	2780	0.86	2390.8
Rye	2580	0.86	2218.8
Barley	3300	0.86	2838.0
Oats	2830	0.86	2433.8
Mixed grain	2520	0.86	2167.2
Other grains	2520	0.86	2167.2

Table 5.31 Yields per hectare and dry matter of 2017 in Finland

Peas	2350	0.86	2021.0
Potatoes	28060	0.22	6173.2
Sugar beet	36270	0.23	8342.1
Turnip rape and rape	1330	0.92	1223.6
Нау	2920	0.86	2511.2
Silage	12730	0.25	3182.5
Pasture	12730	0.2	2546.0
Other grassland	12730	0.2	2546.0
Other crops	9000	0.22	1980.0
Fallows	6365	0.21	1336.7

The total cultivated area as thousands of hectares for all species accompanied with the calculated crop distribution (from the total of 2 243 000 hectares including fallows and other grasslands) are presented in Table 5.32. Emission factors are presented in Table 5.33.

Table 5.32 Weighed emission factor and crop distribution of the year 2018, and NMVOC flux per for the main cultivated species.

	Cultivated area	Crop distribution (%)	NMVOC (kg/dm/a)	Weighted EF
Species	(1 000 ha)			(kg NMVOC / ha / a)
Wheat	190	8.5 %	6.82E-05	1.38E-02
Rye	17	0.8 %	3.70E-04	6.33E-03
Barley	463	20.6 %	6.82E-05	4.00E-02
Oats	324	14.5 %	5.30E-04	1.87E-01
Mixed grain	42	1.9 %	6.82E-05	2.74E-03
Other grains	4	0.2 %	6.82E-05	2.57E-04
Peas	10	0.4 %	6.82E-05	5.90E-04
Potatoes	22	1.0 %	6.82E-05	4.05E-03
Sugar beet	10	0.5 %	6.82E-05	2.59E-03
Turnip rape and	58	2.6 %	5.30E-04	1.69E-02
Нау	110	4.9 %	4.51E-05	5.56E-03
Silage	572	25.5 %	4.51E-05	3.66E-02
Pasture	56	2.5 %	4.51E-05	2.89E-03
Other grassland	25	1.1 %	4.51E-05	1.26E-03
Other crops	96	4.3 %	4.51E-05	3.81E-03
Fallows	246	11.0 %	4.51E-05	6.62E-03

Table 5.33 Finnish NMVOC emission factors of cultivated crops in 5-year intervals and in 2018

Year	1980	1985	1990	1995	2000	2005	2010	2015	2018
Total Cultivated Area	2372	2276	2271	2141	2186	2234	2253	2240	2243
Emission Factor	0.482	0.470	0.513	0.431	0.477	0.399	0.358	0.396	0.330

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied since the 2012 submission. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2018

Open and stubble fallows were removed from the total cultivated area as these are not expected to be sources of NMVOC emissions.

Source-specific planned improvements None.

5.4.10 Use of pesticides (NFR 3Df)

Changes in chapter					
March 2020	KS, JG & JMP				

Source category description

HCB emissions from the use of pesticides resulting from HCB residues in chlorine containing pesticides are included under this category.

Emission trend

The emission trend (Figure 5.20) is sharply declining in the early 1990's due to decreased use of chlorine containing pesticides. A new herbicide containing clopyralid was put on the market in Finland in 2010.

Figure 5.20 HCB from the use of pesticides

Methodological issues

NH₃

In the Guidebook 2019 version calculation of ammonia emissions from ammonia treated straw is presented. In Finland straw is neither treated with ammonia nor urea, therefore NH₃ emissions from this category are reported as NA.

HCB emissions

In the 2020 submission, the calculation of HCB emissions from chlorine containing pesticides has been changed. New information of the use of chlorothalonil has been received and also Guidebook 2019 emission factors have been taken in use¹.

According Finnish Safety and Chemicals Agency (Tukes) chlorothalonil has been sold in Finland by the trade name BRAVO 500 for years 1993-2001. The use of Bravo 500 has been approved for certain forestry purposes. Since 2009 chlorothalonil has been by the trade name Bravo Premium. The use of Bravo Premium has been approved for certain agricultural purposes.

During the manufacture of chlorine containing pesticides HCB may be formed as a by-product and part of this may be left in the product as an impurity (Jones. 2005). Pesticides where HCB can exist as impurity include Lindane, Dacthal (DCPA), Pentachlorophenol, Atrazine, Simazine. Picloram, Pentachloronitrobenzene (PCNB, quintozene), Chlorothalonil, Endosulfan and Clopyralid (Jones, 2005; Environment Canada. 2006/Guidebook 2019).

It is assumed that all HCB residues in the pesticides are emitted to the air, which might be considered as an overestimation.

The HCB impurity concentrations in certain pesticides have been used as emission factors as described in Guidebook 2019 in Table 3 and the sales of the effective substance (Finnish Safety and Chemicals Agency Tukes, 2020) in pesticides as activity data. Sales information provided by Tukes has been claimed confidential since the year 2009 and cannot therefore be published.

Lindane, Dacthal, PCNB and Picloram have not been used or been included in pestisides used in Finland during the period 1990-2018. A new herbicide containing clopyralid was put on the market in Finland in 2010.

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied in the calculation of 2010 emissions. At present, no verification has been carried out for the specific source-sector emissions.

¹ The updated timeseries of HCB emissions were by omission not included in the 15.2. 2020 submission but are included in the 15.3.2020 resubmission.

Source-specific recalculations including changes made in response to the review process

2020

The calculation of HCB emissions from chlorine containing pesticides has been changed due to new information on the use of chlorothalonil and adoption of Guidebook 2019 emission factors. A comparison of the recalculated time series to the previously reported is in Table 5.34.

Table 5.34b. Recalculation of HCB emissions from chlorothalinol - the difference in HCB emissions using
Guidebook 2019 EFs compared to the old EFs (Environment Canada, 2006))

Year	Emissions (kg) using Guidebook 2019 EFs	Emissions (kg) using old EFs	Difference (kg)
1990	0.057	1.207	-1.150
1991	0.039	1.122	-1.083
1992	0.024	0.779	-0.755
1993	0.138	0.783	-0.645
1994	0.123	0.034	0.089
1995	0.054	0.016	0.038
1996	0.073	0.019	0.054
1997	0.091	0.021	0.070
1998	0.086	0.022	0.064
1999	0.081	0.019	0.062
2000	0.023	0.023	0.000
2001	0.017	0.013	0.004
2002	0.012	0.012	0.000
2003	0.012	0.012	0.000
2004	0.012	0.012	0.000
2005	0.011	0.011	0.000
2006	0.008	0.008	0.000
2007	0.006	0.006	0.000
2008	0.008	0.008	0.000
2009	0.012	0.012	0.000
2010	0.184	0.070	0.114
2011	0.157	0.052	0.106
2012	0.091	0.036	0.055
2013	0.016	0.014	0.002
2014	0.036	0.022	0.014
2015	0.021	0.014	0.007
2016	0.021	0.014	0.007
2017	0.034	0.015	0.019
2018*	0.034	0.015	0.019

*for calculation of 2018 emissions activity data from 2017 has been used

Source-specific planned improvements

2021

Activity data to be obtained from TUKES for the recent years.

5.5 Field burning of agricultural wastes (NFR 3F)

Changes in chapterFebruary 2020JG, JMP, KS, JM

Source category description

Field burning of crop residues is a source of NH₃, NO_x, CO, SO_x, NMVOC, particle (TSP, PM₁₀, PM_{2.5}, BC) and heavy metal emissions. Also PCDD/F and PAH emissions are included in the inventory.

Emission trend

The emission trends follow the trends in the activity data for all pollutants (Figure 5.21).

Figure 5.21 Emissions from field burning 1990-2018

Methodological issues

The calculation follows the methodology presented in EMEP/EEA Guidebook 2019.

Activity data

In Finland, burning of agricultural residues occurs only at small scale and it is becoming increasingly rare. Straw is assumed to be the most important agricultural residue burned.

According to the Decree 189/2009 of the Ministry of Agriculture and Forestry field burning of crop residues has to be avoided and is allowed only if it is necessary in order to succeed in sowing or to prevent weeds or pests. According to several agricultural experts residue burning on fields occurs only in small scale in Finland and is becoming increasingly rare. The machinery is usually able to manage the excess straw left on fields after harvesting. Cereal (especially rye) straw is the most important crop residue that may be burned on fields. Straw is mainly left on field but a minor part is used for feed or as litter in animal shelters or burning in boilers.

The annual crop yields for cereals and other crops are based on data from the Yearbook of Agricultural Statistics and the areas for cultivated cereals were also obtained from TIKE (the Information Centre of the Ministry of Agriculture and Forestry). The share of burned residue from total cereal residue on the fields for the years 1990-2013 was re-evaluated and simplified. The situation of residue burning for years 2013 (0.9%) and 2012 (0.7%) is rather accurately known as TIKE made an inquiry to the farmers.

The situation in the beginning of the 1990's is, however, still highly uncertain. Most likely, burning has been more common than nowadays and an expert opinion (Ansalehto, 2007) supports this. Therefore, field burning in the year 1990 was estimated to be twice as much as the average of years 2012 and 2013 and was assumed to rise linearly from year 2012 backwards.

Estimates for the burned fraction of cereal are presented in Table 5.35 and emission factors from Guidebook 2019. From 2014-2018 the fraction burned has been 0.008. Emission factors for wheat are used also for rye and oats.

Voor	Frac of residue burned,	Frac of residue burned,
Ital	cereals	total residue
1990	0.016	0.008
1995	0.014	0.007
2000	0.012	0.007
2005	0.010	0.005
2009	0.008	0.005
2010	0.008	0.004
2011	0.007	0.004
2012*	0.007*	0.004
2013*	0.009*	0.005
2014	0.008	0.005
2015	0.008	0.005
2016	0.008	0.005
2017	0.008	0.005
2018	0.008	0.005

Table 5.35a Estimates of the burned fraction. Fraction of total residue burned is calculated by dividing the burned straw with total residue of all crops (as dry matter) (Finland's NIR 2020 Table 5.5-2)

*an estimate based on TIKE inquiry

Year	Wheat	Barley	Oats	Rye	Total	Year	Wheat	Barley	Oats	Rye	Total
1990	5.98	20.56	17.82	1.16	45.52	2010	6.25	7.84	6.22	0.63	20.94
1991	6.26	18.36	15.78	1.04	41.44	2011	7.97	8.44	7.51	0.69	24.61
1992	3.90	15.49	14.03	0.91	34.34	2012	7.19	8.57	7.79	0.54	24.09
1993	5.93	19.48	16.30	0.96	42.66	2013	8.66	12.90	10.64	0.28	32.47
1994	6.05	19.00	15.03	0.91	40.98	2014	9.67	11.08	8.23	0.68	29.66
1995	5.76	17.15	14.09	0.94	37.95	2015	9.65	10.22	8.42	0.76	29.06
1996	6.79	17.55	15.74	1.39	41.46	2016	9.05	10.74	8.22	0.74	28.75
1997	6.72	18.25	15.06	0.73	40.76	2017	9.54	11.88	8.76	0.85	31.03
1998	5.69	12.26	11.79	0.86	30.59	2018	6.56	9.86	6.81	0.55	23.78
1999	3.43	13.53	11.30	0.35	28.61						
2000	7.10	16.56	15.59	1.53	40.77						
2001	6.22	14.48	13.93	0.88	35.51						
2002	6.90	13.51	15.50	0.96	36.87						
2003	7.94	12.72	12.84	0.93	34.42						
2004	9.16	13.13	10.87	0.87	34.04						
2005	8.62	14.53	9.82	0.38	33.35						
2006	7.05	13.07	9.04	0.57	29.73						
2007	7.90	13.14	10.64	0.94	32.62						
2008	7.52	13.40	10.17	0.63	31.71						
2009	8.03	13.33	9.02	0.41	30.78						

Table 5.35b Activity data for total burned biomass (kt dm)

Emission factors

The emission factors used are from the EMEP/EEA Guidebook 2019. For wheat and barley Tier 2 EF is used. For oats and rye the emission factor of wheat is used. For PCDD/F Tier 1 EF is used for all species

Table 5.36 Emission factors used for field burning of agricultural residues.
--

Pollutant	Wheat	Barley	Oats	Rye	Unit
NOx	0.0023	0.0027	0.0023	0.0023	kg kg-1 dm
СО	0.0667	0.0987	0.0667	0.0667	kg kg-1 dm
NMVOC	0.0005	0.0117	0.0005	0.0005	kg kg-1 dm
SOx	0.0005	0.0001	0.0005	0.0005	kg kg-1 dm
NH ₃	0.0024	0.0024	0.0024	0.0024	kg kg-1 dm
TSP	0.0058	0.0078	0.0058	0.0058	kg kg-1 dm
PM10	0.0057	0.0077	0.0057	0.0057	kg kg-1 dm
PM2.5	0.0054	0.0074	0.0054	0.0054	kg kg-1 dm
BC	500	1200	500	500	mg kg-1 dm
Pb	0.11	0.0036	0.11	0.11	mg kg-1 dm

				I	1
Cd	0.88	0.24	0.88	0.88	mg kg-1 dm
Hg	0.14	0.096	0.14	0.14	mg kg-1 dm
As	0.0064	NA	0.0064	0.0064	mg kg-1 dm
Cr	0.08	0.14	0.08	0.08	mg kg-1 dm
Cu	0.073	0.0036	0.073	0.073	mg kg-1 dm
Ni	0.052	0.011	0.052	0.052	mg kg-1 dm
Se	0.02	0.039	0.02	0.02	mg kg-1 dm
Zn	0.56	0.49	0.56	0.56	mg kg-1 dm
Benzo(a)pyrene	67.7	98.8	67.7	67.7	mg kg-1 dm
Benzo(b)fluoranthene	189.1	307.4	189.1	189.1	mg kg-1 dm
Benzo(k)fluoranthene	80.7	77	80.7	80.7	mg kg-1 dm
Indeno(1.2.3-cd)pyrene	57.9	38.2	57.9	57.9	mg kg-1 dm
PCDD/F	0.5	0.5	0.5	0.5	mg kg-1 dm

* For wheat and barley. Tier 2 EF is used. (EMEP/EEA Guidebook 2019)

* For PCDD/F Tier 1 EF is used for all species

$$E_i = \sum (\text{EF}_{\text{pollutant.}} * \text{AR})_j$$

Where.

i j EF AR = Inventory year = Crops species = Emission factor for pollutant (kg/kg dm)

= Activity rate (AR). mass of residue burnt (kg dry matter)

Uncertainty and time series' consistency

The results of the uncertainty analysis are presented in Annex 7 of the IIR.

Source-specific QA/QC and verification

Normal statistical quality checking related to the assessment of the magnitude and trends has been carried out. The quality system is implied in the calculation of 2010 emissions. At present, no verification has been carried out for the specific source-sector emissions.

Source-specific recalculations including changes made in response to the review process

2009

-Emissions from cereal straw (wheat. barley. oats. rye) burning were included 2014

- The activity data for field burning was revised due to new information from inquiries in 2012 and 2013 for the whole time series and thus NH_3 emissions have also changed.

2015

- Calculation of emissions from field burning of agricultural waste was revised according to new emission factors presented in Guidebook 2013

2016

- Calculation of emissions from field burning of agricultural waste was revised for the 2016 submission due to update of emission factors according to Guidebook 2016 and new studies that improved the activity data.

2017

- Calculation of heavy metal and PCDD/F emissions from field burning of agricultural waste was revised for the 2017 submission due to inclusion of emission factors from Guidebook 2016.

2019

- In response to a question raised during the review, activity data (kg dm burning for specific crop types) has been included in the IIR.

Source-specific planned improvements

None.

5.6 Agriculture other (NFR 3 I)

Not occurring in Finland.